Advertisement

Doklady Mathematics

, Volume 76, Issue 3, pp 856–860 | Cite as

Trajectory attractor for the 2d dissipative Euler equations and its relation to the Navier-Stokes system with vanishing viscosity

  • M. I. Vishik
  • V. V. Chepyzhov
Mathematics
  • 33 Downloads

Keywords

Weak Solution Euler Equation DOKLADY Mathematic Stokes System Trajectory Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Pedlosky, Geophysical Fluid Dynamics (Springer-Verlag, New York, 1987), Vols. 1, 2.zbMATHGoogle Scholar
  2. 2.
    V. Barcilon, P. Constantin, and E. S. Titi, SIAM J. Math. Anal. 19, 1355–1364 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J.-C. Saut, Differ. Int. Equations 182, 1729–1739 (1990).MathSciNetGoogle Scholar
  4. 4.
    A. A. Il’in, Mat. Sb. 182 (1991).Google Scholar
  5. 5.
    R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Springer-Verlag, New York, 1997).zbMATHGoogle Scholar
  6. 6.
    O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics (Nauka, Moscow, 1973; Springer-Verlag, New York, 1985).Google Scholar
  7. 7.
    J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéires (Dunod, Paris, 1969; Mir, Moscow, 1972).Google Scholar
  8. 8.
    R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis (North-Holland, Amsterdam, 1984).zbMATHGoogle Scholar
  9. 9.
    V. I. Yudovich, Zh. Vychisl. Mat. Mat. Fiz. 3, 1032–1066 (1963).zbMATHGoogle Scholar
  10. 10.
    C. Bardos, J. Math. Anal. Appl. 40, 769–790 (1972).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    P. S. Aleksandrov, Introduction to Set Theory and General Topology (Nauka, Moscow, 1977) [in Russian].Google Scholar
  12. 12.
    V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics (Am. Math. Soc, Providence, R.I., 2002).zbMATHGoogle Scholar
  13. 13.
    A. V. Babin and M. I. Vishik, Attractors of Evolution Equations (Nauka, Moscow, 1989) [in Russian].zbMATHGoogle Scholar
  14. 14.
    A. A. Ilyin, A. Miranville, and E. S. Titi, Commun. Math. Sci. 2, 403–426 (2004).zbMATHMathSciNetGoogle Scholar
  15. 15.
    A. A. Ilyin, Proc. Steklov Inst. Math. 255, 136–149 (2006) [Tr. Mat. Inst. im. V.A. Steklova, Russ. Akad. Nauk 255, 146–160 (2006)].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations