Doklady Mathematics

, Volume 76, Issue 2, pp 780–785 | Cite as

Gyroscopic stabilization in the presence of nonconservative forces

  • O. N. KirillovEmail author
Mathematical Physics


DOKLADY Mathematic Jordan Chain Double Eigenvalue Nonconservative Force Nonconservative System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. G. Chetaev, Stability of Motion (Gostekhteorizdat, Moscow, 1946) [in Russian].Google Scholar
  2. 2.
    I. P. Andreichikov and V. I. Yudovich, Izv. Akad. Nauk SSSR Mekh. Tverd. Tela, No. 2, 78–87 (1974).Google Scholar
  3. 3.
    V. M. Lakhadanov, Prikl. Mat. Mekh. 39(1), 53–58 (1975).MathSciNetGoogle Scholar
  4. 4.
    W. Hauger, Trans. ASME, J. Appl. Mech. 42, 739–740 (1975).Google Scholar
  5. 5.
    V. I. Arnold, Additional Chapters of the Theory of Ordinary Differential Equations (Nauka, Moscow, 1978) [in Russian].Google Scholar
  6. 6.
    A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu, Ann. Inst. Henri Poincaré 11(1), 37–90 (1994).zbMATHMathSciNetGoogle Scholar
  7. 7.
    I. Hoveijn and M. Ruijgrok, Z. Angew. Math. Phys. 46, 384–392 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. H. Crandall, Z. Angew. Math. Phys. 46, 761–780 (1995).MathSciNetGoogle Scholar
  9. 9.
    W. F. Langford, Proceedings of IUTAM Symposium on Nonlinear Stochastic Dynamics (Chicago, 2003), pp. 157–167.Google Scholar
  10. 10.
    A. P. Seyranian and A. A. Mailybaev, Multiparameter Stability Theory with Mechanical Applications (World Scientific, Singapore, 2003).zbMATHGoogle Scholar
  11. 11.
    H. K. Moffatt, Y. Shimomura, and M. Branicki, Proc. R. Soc. London A 460, 3643–3672 (2004).zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    V. V. Kozlov, Funkts. Anal. Ego Prilozh. 39(4), 32–47 (2005).Google Scholar
  13. 13.
    N. M. Bou-Rabee, J. E. Marsden, and L. A. Romero, Z. Angew. Math. Mech. 85, 618–642 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    O. N. Kirillov, Int. J. Nonlinear Mech. 42, 71–87 (2007).CrossRefMathSciNetGoogle Scholar
  15. 15.
    R. Krechetnikov and J. E. Marsden, Rev. Mod. Phys. 79, 519–553 (2007).CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations