Doklady Mathematics

, Volume 76, Issue 1, pp 596–598 | Cite as

On δ-homogeneous Riemannian manifolds

Mathematics

Keywords

Riemannian Manifold Riemannian Symmetric Space Gelfand Pair Homogeneous Riemannian Manifold Full Isometry Group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Wolf, Spaces of Constant Curvature, 5th ed. (Publish or Perish, Boston, Mass., 1981; Nauka, Moscow, 1982).Google Scholar
  2. 2.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. I and II (Interscience, New York, 1963, 1969; Nauka, Moscow, 1981).Google Scholar
  3. 3.
    H. D. Nguyěñ, Proc. Am. Math. Soc. 128, 3425–3433 (2000).CrossRefGoogle Scholar
  4. 4.
    O. Kowalski and L. Vanhecke, Boll. Un. Mat. Ital. B (7) 5(1), 189–246 (1991).MATHGoogle Scholar
  5. 5.
    H. Tamaru, Osaka J. Math. 36, 835–851 (1999).MATHGoogle Scholar
  6. 6.
    Z. Dušek, O. Kowalski, and S. Ž. Nikčević, Differ. Geom. Appl. 21, 65–78 (2004).CrossRefGoogle Scholar
  7. 7.
    C. Gordon and W. Ziller, Proc. Am. Math. Soc. 91(2), 287–290 (1984).MATHCrossRefGoogle Scholar
  8. 8.
    M. Krämer, Compos. Math. 38(2), 129–153 (1979).MATHGoogle Scholar
  9. 9.
    V. Berestovskii and C. Plaut, J. Geom. Anal. 9(2), 203–219 (1999).MATHGoogle Scholar
  10. 10.
    V. N. Berestovskii and Luis Guijarro, Ann. Global Anal. Geom. 18, 577–588 (2000).CrossRefGoogle Scholar
  11. 11.
    V. N. Berestovskii, Sib. Mat. Zh. 29(6), 17–29 (1988).Google Scholar
  12. 12.
    B. Kostant, Nagoya Math. J. 12, 31–54 (1957).MATHGoogle Scholar
  13. 13.
    A. L. Onishchik, Topology of Transitive Transformation Groups (Johann Ambrosius Barth Verlag, Leipzig, 1994).MATHGoogle Scholar
  14. 14.
    B. Kostant, Proc. Math. Acad. Sci. USA 42, 354–357 (1956).MATHCrossRefGoogle Scholar
  15. 15.
    D. E. Vol’per, Sib. Mat. Zh. 40(1), 49–56 (1999).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics (Omsk Branch), Siberian BranchRussian Academy of SciencesOmskRussia
  2. 2.Rubtsovsk Industrial InstitutePolzunov Altai State Technical UniversityRubtsovskRussia

Personalised recommendations