Doklady Mathematics

, Volume 75, Issue 2, pp 236–239 | Cite as

The global attractor of the nonautonomous 2D navier-stokes system with singularly oscillating external force

  • M. I. Vishik
  • V. V. Chepyzhov
Mathematics

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Springer, New York, 1988).MATHGoogle Scholar
  2. 2.
    A. V. Babin and M. I. Vishik, Attractors of Evolution Equations (Nauka, Moscow, 1989; North-Holland, Amsterdam, 1992).MATHGoogle Scholar
  3. 3.
    V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics (Am. Math. Soc., Providence, RI, 2002).MATHGoogle Scholar
  4. 4.
    M. I. Vishik and V. V. Chepyzhov, Sbornik: Math. 196, 635–677 (1996) [Mat. Sb. 196 (6), 17–42 (2005)].MathSciNetGoogle Scholar
  5. 5.
    J. K. Hale and S. M. Verduyn Lunel, J. Integral Equations Appl. 2(4), 463–494 (1990).MATHMathSciNetGoogle Scholar
  6. 6.
    A. A. Il’in, Sbornik: Math. 187, 635–677 (1996) [Mat. Sb. 187 (5), 15–58 (1996)].MATHCrossRefGoogle Scholar
  7. 7.
    M. I. Vishik and V. V. Chepyzhov, Sbornik: Math. 192, 11–47 (2001) [Mat. Sb. 192 (1), 11–47 (2001)].MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. I. Vishik and B. Fidler, Russ. Math. Surveys 57, 709–728 (2002) [Usp. Mat. Nauk 57 (4), 75–94 (2002)].MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Efendiev and S. Zelik, Ann. Inst. H. Poincaré 19(6), 961–989 (2002).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluid (Gordon & Breach, New York, 1969; Nauka, Moscow, 1970).Google Scholar
  11. 11.
    J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires (Dunod, Paris, 1969; Mir, Moscow, 1972).MATHGoogle Scholar
  12. 12.
    R. Temam, Navier-Stokes Equations, Theory, and Numerical Analysis (Mir, Moscow, 1972; North-Holland, Amsterdam, 1984).Google Scholar
  13. 13.
    P. Constantin and C. Foias, Navier-Stokes Equations (Univ. Chicago Press, Chicago, 1989).Google Scholar
  14. 14.
    V. V. Chepyzhov and M. I. Vishik, El. J. ESAIM: COCV 8, 467–487 (2002).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • M. I. Vishik
    • 1
  • V. V. Chepyzhov
    • 1
  1. 1.Institute of Problems of Data TransmissionRussian Academy of SciencesMoscowRussia

Personalised recommendations