Advertisement

Doklady Mathematics

, Volume 75, Issue 2, pp 186–189 | Cite as

On the homotopy classification of elliptic operators on manifolds with corners

  • V. E. Nazaikinskii
  • A. Yu. Savin
  • B. Yu. Sternin
Mathematics

Keywords

Vector Bundle Elliptic Operator Toeplitz Operator DOKLADY Mathematic Pseudodifferential Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Melrose, in Proceedings of the International Congress of Mathematicians, Kyoto (Heidelberg, Berlin, 1990), pp. 217–234.Google Scholar
  2. 2.
    B. Monthubert, J. Funct. Anal. 199(1), 243–286 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    B. A. Plamenevskii and V. N. Senichkin, Algebra Analiz 13(6), 124–174 (2001).MathSciNetGoogle Scholar
  4. 4.
    V. P. Maslov, Operator Methods (Nauka, Moscow, 1973) [in Russian].Google Scholar
  5. 5.
    A. Savin, K-Theory 34(1), 71–98 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    V. E. Nazaikinskii, A. Yu. Savin, and B. Yu. Sternin, arXiv:math.KT/0608332.Google Scholar
  7. 7.
    N. Higson and J. Roe, Analytic K-Homology (Oxford Univ. Press, Oxford, 2000).zbMATHGoogle Scholar
  8. 8.
    B. Monthubert and V. Nistor, arXiv:math.KT/0507601.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. E. Nazaikinskii
    • 1
    • 2
  • A. Yu. Savin
    • 1
    • 2
  • B. Yu. Sternin
    • 1
    • 2
  1. 1.Institute for Problems of MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.Independent University of MoscowMoscowRussia

Personalised recommendations