Doklady Mathematics

, Volume 74, Issue 3, pp 910–913 | Cite as

Information entropy in problems of classical and quantum statistical mechanics

  • V. V. Kozlov
  • O. G. Smolyanov
Mathematical Physics

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Alicki and M. Fannes, Quantum Dynamical Systems (Oxford Univ. Press, Oxford, 2001).MATHGoogle Scholar
  2. 2.
    M. Ohya and D. Petz, Quantum Entropy and Its Use (Springer-Verlag, Berlin, 1993).MATHGoogle Scholar
  3. 3.
    H. Poincaré, in Selected Works (Nauka, Moscow, 1974), Vol. 3, pp. 385–412.MATHGoogle Scholar
  4. 4.
    J. Von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, N.J.; Nauka, Moscow, 1964).Google Scholar
  5. 5.
    V. V. Kozlov, Heat Equilibrium According to Gibbs and Poincaré (Izhevsk, Moscow, 2002) [in Russian].Google Scholar
  6. 6.
    D. V. Zubarev, V. G. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes (Moscow, 2001) [in Russian].Google Scholar
  7. 7.
    N. N. Bogolyubov and N. N. Bogolyubov, Jr., Introduction to Quantum Statistical Mechanics (Nauka, Moscow, 1984; World Scientific, Singapore, 1982).MATHGoogle Scholar
  8. 8.
    J. W. Gibbs, Elementary Principles in Statistical Mechanics (Yale Univ. Press, New Haven, Conn., 1902; Gostekhizdat, Moscow, 1946).MATHGoogle Scholar
  9. 9.
    J. von Neumann, Z. Phys. 57, 30–70 (1929).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. V. Kozlov
    • 1
  • O. G. Smolyanov
    • 2
  1. 1.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations