Doklady Mathematics

, Volume 74, Issue 3, pp 821–826 | Cite as

Arnold tongues in the problem of large-amplitude periodic trajectories

  • V. S. Kozyakin
  • A. M. Krasnosel’skii
  • D. I. Rachinskii
Mathematics
  • 22 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold, Geometric Methods in the Theory of Ordinary Differential Equations (MTsNMO, Izhevsk, 1999) [in Russian].Google Scholar
  2. 2.
    Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer, New York, 1998).MATHGoogle Scholar
  3. 3.
    V. S. Kozyakin, in Differential Equations (Kuibyshev. Gos. Univ., Kuibyshev, 1976), pp. 39–44 [in Russian].Google Scholar
  4. 4.
    V. S. Kozyakin, Autom. Remote Control 46, 1098–1104 (1985) [Avtom. Telemekh., No. 9, 42–48 (1985)].Google Scholar
  5. 5.
    M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations (Pergamon, Oxford, 1964; Gostekhteorizdat, Moscow, 1956).Google Scholar
  6. 6.
    A. M. Krasnosel’skii and A. V. Pokrovskii, Discrete Contin. Dyn. Syst. 7(7), 100–114 (2001).MathSciNetGoogle Scholar
  7. 7.
    V. S. Kozyakin, Soviet Math. Dokl. 18, 18–21 (1977) [Dokl. Akad. Nauk SSSR 232, 25–27 (1977)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. S. Kozyakin
    • 1
    • 2
  • A. M. Krasnosel’skii
    • 1
    • 2
  • D. I. Rachinskii
    • 1
    • 2
  1. 1.Institute for Data Transmission ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.University College CorkCorkIreland

Personalised recommendations