Advertisement

Doklady Mathematics

, Volume 74, Issue 3, pp 821–826 | Cite as

Arnold tongues in the problem of large-amplitude periodic trajectories

  • V. S. Kozyakin
  • A. M. Krasnosel’skii
  • D. I. Rachinskii
Mathematics
  • 22 Downloads

Keywords

Periodic Orbit Periodic Point DOKLADY Mathematic Periodic Trajectory Periodic Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold, Geometric Methods in the Theory of Ordinary Differential Equations (MTsNMO, Izhevsk, 1999) [in Russian].Google Scholar
  2. 2.
    Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer, New York, 1998).zbMATHGoogle Scholar
  3. 3.
    V. S. Kozyakin, in Differential Equations (Kuibyshev. Gos. Univ., Kuibyshev, 1976), pp. 39–44 [in Russian].Google Scholar
  4. 4.
    V. S. Kozyakin, Autom. Remote Control 46, 1098–1104 (1985) [Avtom. Telemekh., No. 9, 42–48 (1985)].Google Scholar
  5. 5.
    M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations (Pergamon, Oxford, 1964; Gostekhteorizdat, Moscow, 1956).Google Scholar
  6. 6.
    A. M. Krasnosel’skii and A. V. Pokrovskii, Discrete Contin. Dyn. Syst. 7(7), 100–114 (2001).MathSciNetGoogle Scholar
  7. 7.
    V. S. Kozyakin, Soviet Math. Dokl. 18, 18–21 (1977) [Dokl. Akad. Nauk SSSR 232, 25–27 (1977)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. S. Kozyakin
    • 1
    • 2
  • A. M. Krasnosel’skii
    • 1
    • 2
  • D. I. Rachinskii
    • 1
    • 2
  1. 1.Institute for Data Transmission ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.University College CorkCorkIreland

Personalised recommendations