Doklady Mathematics

, Volume 73, Issue 1, pp 129–133 | Cite as

Berry phase around degeneracies

  • A. A. Mailybaev
  • O. N. Kirillov
  • A. P. Seyranian
Mathematical Physics


Berry Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. V. Berry, Proc. R. Soc. London A 392, 45–57 (1984).MathSciNetGoogle Scholar
  2. 2.
    A. Shapere and F. Wilczek, Geometric Phases in Physics (World Scientific, Singapore, 1989).Google Scholar
  3. 3.
    A. Bohm, A. Mostafazadeh, H. Koizumi, et al., The Geometric Phase in Quantum Systems (Springer-Verlag, Berlin, 2003).Google Scholar
  4. 4.
    S. I. Vinitskii, V. L. Derbov, V. M. Dubovik, et al., Usp. Fiz. Nauk 160(6), 1–49 (1990).MathSciNetGoogle Scholar
  5. 5.
    J. Anandan, J. Christian, and K. Wanelik, Am. J. Phys. 65, 180–185 (1997).CrossRefGoogle Scholar
  6. 6.
    A. S. Landsberg, Phys. Rev. Lett. 69, 865–868 (1992).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Encyclopedia of Mathematical Sciences, Vol. 3: Mathematical Aspects of Classical and Celestial Mechanics (Springer-Verlag, Berlin, 1988; Editorial URSS, Moscow, 2002).Google Scholar
  8. 8.
    A. P. Seyranian and A. A. Mailybaev, Multiparameter Stability Theory with Mechanical Applications (World Scientific, Singapore, 2003).Google Scholar
  9. 9.
    A. P. Seyranian, O. N. Kirillov, and A. A. Mailybaev, J. Phys. A: Math. Gen. 38, 1723–1740 (2005).CrossRefMathSciNetGoogle Scholar
  10. 10.
    A. A. Mailybaev, Lin. Algebra Appl. 337, 87–108 (2001).zbMATHMathSciNetGoogle Scholar
  11. 11.
    V. I. Arnold, Selecta Math. New Ser. 1(1), 1–19 (1995).Google Scholar
  12. 12.
    M. V. Berry and M. Wilkinson, Proc. R. Soc. London A 392, 15–43 (1984).MathSciNetGoogle Scholar
  13. 13.
    A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Scattering, Reactions, and Decays in Nonrelativistic Quantum Mechanics (Israel Program for Scientific Translations, Jerusalem, 1966; Nauka, Moscow, 1971).Google Scholar
  14. 14.
    W. D. Heiss and H. L. Harney, Eur. Phys. J. Ser. D 17, 149–151 (2001).Google Scholar
  15. 15.
    J. C. Garrison and E. M. Wright, Phys. Lett. A 128, 177–181 (1988).CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. A. Mailybaev
    • 1
  • O. N. Kirillov
    • 1
  • A. P. Seyranian
    • 1
  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations