Advertisement

Control of the Dynamics of a System with Differential Constraints

  • R. G. MukharlyamovEmail author
CONTROL IN DETERMINISTIC SYSTEMS

Abstract

We propose a method for solving the control problem of a system with allowance for the dynamics of actuation mechanisms. The aim of the control and kinematic properties of the system are determined by the holonomic and nonholonomic constraints imposed on the phase coordinates of the control plant. Control actions are generated with allowance for conditions for stabilizing the constraints in the numerical solution of the equations of the dynamics of a closed system.

Notes

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research (project no. 19-08-00261 a).

REFERENCES

  1. 1.
    H. F. Olson, Dynamical Analogies (Van Nostrand, New York, 1943).Google Scholar
  2. 2.
    R. A. Layton, Principles of Analytical System Dynamics (Springer, New York, 1998).CrossRefzbMATHGoogle Scholar
  3. 3.
    H. Béghin, Étude théorique des compas gyrostatiques Anschütz et Sperry (C. R. Acad. Sci., Paris, 1922) [in French].zbMATHGoogle Scholar
  4. 4.
    G. V. Korenev, Purpose and Adaptability of Movement (Nauka, Moscow, 1974) [in Russian].Google Scholar
  5. 5.
    A. S. Galiullin, I. A. Mukhametzyanov, R. G. Mukharlyamov, and V. D. Furasov, Building Software Systems Movement (Nauka, Moscow, 1971) [in Russian].zbMATHGoogle Scholar
  6. 6.
    R. G. Mukharlyamov, “To inverse problems of the qualitative theory of differential equations,” Differ. Uravn. 3, 1673–1681 (1967).MathSciNetzbMATHGoogle Scholar
  7. 7.
    O. V. Matukhina, “On the problem of simulating kinematics and dynamics of controllable systems with software links,” Inzhen. Zh.: Nauka Innov., No. 4 (2018).  https://doi.org/10.18698/2308-6033-2018-4-1753
  8. 8.
    J. Baumgarte, “Stabilization of constraints and integrals of motion in dynamical systems,” Comput. Methods Appl. Mech. Eng., No. 1, 1–16 (1972).Google Scholar
  9. 9.
    J. Baumgarte, “Stabilized Kepler motion connected with analytic step adaptation,” Celest. Mech. 13, 105–109 (1976).CrossRefzbMATHGoogle Scholar
  10. 10.
    V. A. Avdyushev, Numerical Orbit Modeling (NTL, Tomsk, 2010) [in Russian].Google Scholar
  11. 11.
    A. A. Burov and I. I. Kosenko, “The Lagrange differential-algebraic equations,” J. Appl. Math. Mech. 78, 587–598 (2014).MathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Wittenburg, Dynamics of Systems of Rigid Bodies (Vieweg Teubner, Berlin, 1977).CrossRefzbMATHGoogle Scholar
  13. 13.
    F. Amirouche, Fundamentals of Multibody Dynamics: Theory and Applications (Birkhäuser, Boston, 2006).zbMATHGoogle Scholar
  14. 14.
    Shih-Tin Lin and Jiann-Nan Huang, “Numerical integration of multibody mechanical systems using Baumgarte’s constraint stabilization method,” J. Chin. Inst. Eng. 25, 243–252 (2002).CrossRefGoogle Scholar
  15. 15.
    U. M. Ascher, Hongsheng Chin, L. R. Petzold, and S. Reich, “Stabilization of constrained mechanical systems with DAEs and invariant manifolds,” J. Mech. Struct. Mach. 23, 135–158 (1995).MathSciNetCrossRefGoogle Scholar
  16. 16.
    U. M. Ascher, “Stabilization of invariant of discretized differential systems,” Numer. Algorithms 14, 1–24 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    U. M. Ascher, Hongsheng Chin, and S. Reich, “Stabilization of DAEs and invariant manifolds,” Numer. Math. 67, 131–149 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Shih-Tin Lin and Ming-Chong Hong, “Stabilization method for the numerical integration of controlled multibody mechanical system: a hybrid integration approach,” JSME Int. J., Ser. C 44, 79–88 (2001).Google Scholar
  19. 19.
    G. K. Suslov, On the Force Function, Admitting Given Integrals (Kievsk. Univ., Kiev, 1890) [in Russian].Google Scholar
  20. 20.
    N. E. Zhukovskii, “Determination of the force function for this family of trajectories,” in Complete Collection of Works (ONTI NKTP SSSR, Moscow, Leningrad, 1937), Vol. 1, pp. 293–308 [in Russian].Google Scholar
  21. 21.
    T. Levi Chivita and U. Amaldi, Lezioni di meccanica razionale (Compomat, Italy, 2013), Vol. 2, Part 2 [in Italian].Google Scholar
  22. 22.
    A. S. Galiullin, Solving Methods for Inverse Dynamics Problems (Nauka, Moscow, 1986) [in Russian].zbMATHGoogle Scholar
  23. 23.
    G. Bozis and S. Ichtiaroglou, “Existence and construction of dynamical systems having a prescribed integral of motion–an inverse problem,” Inverse Probl. 3, 213–227 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    N. P. Erugin, “Construction of the entire set of systems of differential equations with a given integral curve,” Prikl. Mat. Mekh. 21, 659–670 (1952).MathSciNetGoogle Scholar
  25. 25.
    R. G. Mukharlyamov, “On the construction of differential equations of optimal motion for a given variety,” Differ. Uravn. 7, 1825–1834 (1971).MathSciNetGoogle Scholar
  26. 26.
    R. G. Mukharlyamov, “On the construction of the set of systems of differential equations of stable motion on an integral manifold,” Differ. Uravn. 5, 688–699 (1969).Google Scholar
  27. 27.
    R. G. Mukharlyamov, “On solving systems of nonlinear equations,” Zh. Vychisl. Mat. Mat. Fiz. 11, 829–836 (1971).Google Scholar
  28. 28.
    R. G. Mukharlyamov, “On equations of motion of mechanical systems,” Differ. Uravn. 19, 2048–2056 (1983).MathSciNetzbMATHGoogle Scholar
  29. 29.
    R. G. Mukharlyamov and Deressa Chernet Tuge, “Stabilization of redundantly constrained dynamic system,” Vestn. RUDN, Ser.: Mat. Inform. Fiz., No. 1, 60–72 (2015).Google Scholar
  30. 30.
    R. G. Mukharlyamov, “Control of dynamics of systems with positional relations,” in Analytical Mechanics, Stability and Control, Proceedings of the 11th International Chetaev Conference, Sect. 3: Control (KNITU-KAI, Kazan’, 2017), Vol. 3, Part 2, pp. 140–146.Google Scholar
  31. 31.
    V. V. Kozlov, “The dynamics of systems with servoconstraints. I,” Regular Chaot. Dyn. 20, 205–224 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    V. V. Kozlov, “The dynamics of systems with servoconstraints. II,” Regular Chaot. Dyn. 20, 401–427 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    A. W. Beshaw, “Dynamic equation of constrained mechanical system,” Vestn. RUDN. Ser.: Mat. Inform. Fiz., No. 3, 115–124 (2014).Google Scholar
  34. 34.
    Adaptive Optics: Collection of Articles, Ed. by E. A. Vitrichenko (Mir, Moscow, 1980) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.RUDN UniversityMoscowRussia

Personalised recommendations