Advertisement

Method to Construct Periodic Solutions of Controlled Second-Order Dynamical Systems

  • L. A. KliminaEmail author
  • Yu. D. Selyutskiy
STABILITY

Abstract

Nonconservative mechanical systems with one degree of freedom are considered. The goal is to provide the existence of steady-state oscillations with the prescribed properties. The system’s behavior is modeled by a second-order autonomous dynamical system with one variable parameter describing the amplifying coefficient of the control action. A numerical-analytic method to find the amplifying coefficient is proposed. Conditions of the orbital stability are obtained for the steady-state oscillations. An example of the application of the method is provided. The proposed approach can be applied to solve control problems and to find periodic solutions of second-order autonomous dynamical systems.

Notes

ACKNOWLEDGMENTS

This work was supported by Russian Foundation for Basic Research, project nos. 18-31-20029 and 17-08-01366.

REFERENCES

  1. 1.
    A. D. Morozov and O. S. Kostromina, “On periodic perturbations of asymmetric duffing-Van-Der-Pol equation,” Int. J. Bifurc. Chaos 24, 1450061 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    L. Klimina, “Dynamics of a slider-crank wave-type wind turbine,” in Proceedings of the 14th IFToMM World Congress, Taipei, 2015, pp. 582–588.Google Scholar
  3. 3.
    M. Dosaev, L. Klimina, and Y. Selyutskiy, “Wind turbine based on antiparallel link mechanism,” in New Trends in Mechanism and Machine Science (Springer, New York, 2017), pp. 543–550.Google Scholar
  4. 4.
    A. B. Rostami and A. C. Fernandes, “Mathematical model and stability analysis of fluttering and autorotation of an articulated plate into a flow,” Commun. Nonlin. Sci. Numer. Simul. 56, 544–560 (2018).MathSciNetCrossRefGoogle Scholar
  5. 5.
    R. E. Seifullaev, A. Fradkov, and D. Liberzon, “Energy control of a pendulum with quantized feedback,” Automatica 67, 171–177 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. M. Tusset, F. C. Janzen, V. Piccirillo, R. T. Rocha, J. M. Balthazar, and G. Litak, “On nonlinear dynamics of a parametrically excited pendulum using both active control and passive rotational (MR) damper,” J. Vibrat. Control 24, 1587–1599 (2018).MathSciNetCrossRefGoogle Scholar
  7. 7.
    C. Chen, D. H. Zanette, J. R. Guest, D. A. Czaplewski, and D. Lopez, “Self-sustained micromechanical oscillator with linear feedback,” Phys. Rev. Lett. 117, 017203 (2016).CrossRefGoogle Scholar
  8. 8.
    V. N. Tkhai, “Stabilizing the oscillations of an autonomous system,” Autom. Remote Control 77, 972 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    O. E. Vasyukova and L. A. Klimina, “Modeling of self-oscillations of a controlled physical pendulum, taking into account the dependence of the friction moment on the normal reaction in the hinge,” Nelin. Dinam. 14 (1), 33–44 (2018).CrossRefzbMATHGoogle Scholar
  10. 10.
    A. L. Fradkov and B. R. Andrievsky, “Passification-based robust flight control design,” Automatica 47, 2743–2748 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J. L. P. Felix, J. M. Balthazar, and R. M. Brasil, “On saturation control of a non-ideal vibrating portal frame foundation type shear-building,” J. Vibrat. Control 11, 121–136 (2005).CrossRefzbMATHGoogle Scholar
  12. 12.
    L. S. Pontryagin, “On dynamical systems close to Hamiltonian systems,” J. of Experimental and Theoretical Physics 4(9), 883–885 (1934). (1934).Google Scholar
  13. 13.
    N. N. Bolotnik, I. M. Zeidis, K. Zimmermann, and S. F. Yatsun, “Dynamics of controlled motion of vibration-driven systems,” J. Comput. Syst. Sci. Int. 45, 831 (2006).CrossRefzbMATHGoogle Scholar
  14. 14.
    N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations (Nauka, Moscow, 1958) [in Russian].zbMATHGoogle Scholar
  15. 15.
    A. M. Samoilenko, “Numerical analytical method of investigating periodic systems of ordinary differential equations. I,” Ukr. Mat. Zh. 17 (4), 82–93 (1965).CrossRefGoogle Scholar
  16. 16.
    N. I. Ronto, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: Achievements and new trends of development. IV,” Ukr. Mat. Zh. 50, 1656–1672 (1998).zbMATHGoogle Scholar
  17. 17.
    A. Buonomo and A. L. Schiavo, “A constructive method for finding the periodic response of nonlinear circuits,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 50, 885–893 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    V. O. Bragin, V. I. Vagaitsev, N. V. Kuznetsov, and G. A. Leonov, “Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits,” J. Comput. Syst. Sci. Int. 50, 511 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    L. A. Klimina, “Method for Finding Periodic Trajectories of Centrally Symmetric Dynamical Systems on the Plane,” Differential Equations, 55(2), 159–168 (2019).Google Scholar
  20. 20.
    N. N. Bautin and E. A. Leontovich, Methods and Techniques for Qualitative Research of Dynamic Systems on the Plane (Nauka, Moscow, 1990) [in Russian].zbMATHGoogle Scholar
  21. 21.
    V. A. Samsonov, M. Z. Dosaev, and Y. D. Selyutskiy, “Methods of qualitative analysis in the problem of rigid body motion in medium,” Int. J. Bifurcat. Chaos 21, 2955–2961 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    A. C. Fernandes and A. B. Rostami, “Hydrokinetic energy harvesting by an innovative vertical axis current turbine,” Renewable Energy 81, 694–706 (2015).CrossRefGoogle Scholar
  23. 23.
    M. Berci and G. Dimitriadis, “A combined multiple time scales and harmonic balance approach for the transient and steady-state response of nonlinear aeroelastic systems,” J. Fluids Struct. 80, 132–144 (2018).CrossRefGoogle Scholar
  24. 24.
    A. M. Formalskii, Stabilization and Motion Control of Unstable Objects (Walter de Gruyter Berlin, Boston, 2015).CrossRefzbMATHGoogle Scholar
  25. 25.
    M. Z. Dosaev, V. A. Samsonov, and Yu. D. Selyutskii, Yu. D. Seliutski, “On the dynamics of a small-scale wind power generator,” Doklady Physics, 52(9), 493-495 (2007). Google Scholar
  26. 26.
    M. Z. Dosaev, C. H. Lin, W. L. Lu, V. A. Samsonov, and Y. D. Selyutskii, “A qualitative analysis of the steady modes of operation of small wind power generators,” J. Appl. Math. Mech., 73(3), 259–263 (2009).Google Scholar
  27. 27.
    L. Klimina and B. Lokshin, “Construction of bifurcation diagrams of periodic motions of an aerodynamic pendulum via the method of iterative averaging,” in Proceedings of the 14th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference) STAB2018 (IEEE, Moscow, 2018), pp. 1–3.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Mechanics, Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations