Design of Diesel Engine Mathematical Model Oriented to Speed Control

  • M. E. BelyaevEmail author
  • D. N. Gerasimov
  • M. R. Rymalis
  • S. A. Semenov
Control Systems for Technological Objects


We provide the synthesis procedure for a mathematical model of the 20ChN26.5/31 diesel engine treated as a part of 20EDG500 diesel-electric set (power 6.3 MW). The model is designed for synthesis of engine speed control and simulation of closed-loop control systems in generator sets. The model structure is based on the fundamental laws of physics, while its parameters and static functions are obtained using least squares approach and the data taken during experimental testing of the set. The results of model verification are presented, and the model outputs are compared with the experimental data. Simulation of the control system closed by proportional-integral-differential law is presented as an example of the model application.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Jankovic and I. Kolmanovsky, “Constructive Lyapunov control design for turbocharged diesel engines,” IEEE Trans. Control Syst. Technol. 8, 288–299 (2000).CrossRefGoogle Scholar
  2. 2.
    L. Guzzella and C. H. Onder, Introduction to Modeling and Control of Internal Combustion Engine Systems (Springer, New York, 2004), p. 300.CrossRefGoogle Scholar
  3. 3.
    V. V. Furman, V. A. Ivanov, and V. A. Markov, “Electronic control systems for diesel engines,” Inzhen. Zh. Nauka Innov., No. 5 (2013).Google Scholar
  4. 4.
    M. Jankovic, “Control design for a diesel engine model with time delay,” in Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, 2001.Google Scholar
  5. 5.
    J. Wahlström and L. Eriksson, “Modeling diesel engines with a variable–geometry turbocharger and exhaust gas recirculation by optimization of model parameters for capturing nonlinear system dynamics,” Proc. Inst. Mech. Eng., Pt. D: J. Automob. Eng. 225 (7) (2011).Google Scholar
  6. 6.
    J. A. Cook, J. W. Grizzle, and J. Sun, “Engine control systems,” in The Control Handbook (CRC, Boca Raton, FL, 1996), pp. 1261–1274.Google Scholar
  7. 7.
    L. Guzzella and A. Amstutz, “Control of diesel engines,” IEEE Contr. Syst. Mag. 18 (5), 53–71 (1998).CrossRefGoogle Scholar
  8. 8.
    M. Kao and J. J. Moskwa, “Nonlinear diesel engine control and cylinder pressure observation,” Trans. ASME 117, 183–192 (1995).Google Scholar
  9. 9.
    D. N. Gerasimov, H. Javaherian, D. V. Efimov, and V. O. Nikiforov, “Injection engine as a control object. I. Schematic diagram of the engine and synthesis of a mathematical model,” J. Comput. Syst. Sci. Int. 49, 811 (2010).CrossRefzbMATHGoogle Scholar
  10. 10.
    D. N. Gerasimov, H. Javaherian, D. V. Efimov, and V. O. Nikiforov, “Injection engine as a control object. II. Problems of automatic control of the engine,” J. Comput. Syst. Sci. Int. 49, 998 (2010).CrossRefzbMATHGoogle Scholar
  11. 11.
    M. Yang and S. C. Sorenson, “Survey of the electronic injection and control of diesel engines,” SAE Paper 940378 (SAE Int., 1994).Google Scholar
  12. 12.
    Robert Bosch GmbH, Diesel–Engine Management, 4th ed. (Wiley–Blackwell, NJ, 2006), p. 504.Google Scholar
  13. 13.
    I. Kolmanovsky, M. van Nieuwstadt, and P. Moraal, “Optimal control of variable geometry turbocharged diesel engines with exhaust gas recirculation,” Proc. ASME Dyn. Syst. Contr. Div. 67, 265–273 (1999).Google Scholar
  14. 14.
    V. N. Lukanin, K. A. Morozov, A. S. Khachiyan, et al., Internal Combustion Engines, Vol. 1: The Theory of Working Processes, The School–Book, Ed. by V. N. Lukanin, 2nd ed. (Vyssh. Shkola, Moscow, 2005) [in Russian].Google Scholar
  15. 15.
    Y. Zhai and D. Yu, “RBF–based feedforward–feedback control for air–fuel ratio of SI engines,” IFAC Proc. Vols. 40 (21) (2007).Google Scholar
  16. 16.
    D. N. Gerasimov and E. I. Pshenichnikova, “Neural network data–driven engine torque and air–fuel ratio control,” in Proceedings of the 16th IEEE Mediterranean Electrotechnical Conference, MELECON, Yasmine Hammamet, Tunisia, 2012, pp. 524–527.Google Scholar
  17. 17.
    D. N. Gerasimov, H. Javaherian, and V. O. Nikiforov, “Data driven inverse–model control of SI engines,” in Proceedings of the American Control Conference, San Francisco, CA, 2011, pp. 426–431.Google Scholar
  18. 18.
    D. N. Gerasimov, M. E. Belyaev, V. O. Nikiforov, H. Javaherian, S. Li, and Y. Hu, “Inverse adaptive air–fuel ratio control in spark ignition engines,” in Proceedings of the European Control Conference ECC 2016, Aalborg, Denmark, 2016, pp. 1253–1258.CrossRefGoogle Scholar
  19. 19.
    W. Haiyan and Z. Jundong, “Control oriented dynamic modeling of a turbocharged diesel engine,” in Proceedings of the 6th IEEE International Conference on Intelligent Systems Design and Applications ISDA, Jinan, China, 2006, pp. 142–145.Google Scholar
  20. 20.
    P. Falcone, M. C. de Gennaro, G. Fiengo, L. Glielmo, S. Santini, and P. Langthaler, “Torque generation model for diesel engine,” in Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, 2003, pp. 1771–1776.Google Scholar
  21. 21.
    A. Brahma, D. Upadhyay, A. Serrani, and G. Rizzoni, “Modeling, identification and state estimation of diesel engine torque and NOx dynamics in response to fuel quantity and timing excitations,” in Proceedings of the IEEE American Control Conference, Boston, MA, 2004, pp. 2166–2171.Google Scholar
  22. 22.
    L. Ljung, System Identification: Theory for the User, 2nd ed. (Prentice–Hall, Upper Saddle River, NJ, 1999), pp. 208–211, 460–465, 511–516.CrossRefGoogle Scholar
  23. 23.
    B. Unver, Y. Koyuncuoglu, M. Gokasan, and S. Bogosyan, “Modeling and validation of turbocharged diesel engine,” Int. J. Automotive Technol. 17, 13–34 (2016).CrossRefGoogle Scholar
  24. 24.
    G. Kushwaha and S. Saraswati, “Air path identification of turbocharged diesel engine using RNN,” in Proceedings of the International Conference on Industrial Instrumentation and Control ICIC, Pune, India, 2015, pp. 1328–1332.Google Scholar
  25. 25.
    D. D. Torkzadeh, W. Langst, and U. Kiencke, “Engine modeling and exhaust gas estimation for DI–diesel engines,” in Proceedings of the IEEE American Control Conference, Arlington, VA, 2001, pp. 489–494.Google Scholar
  26. 26.
    S. Kim, H. Jin, and S. B. Choi, “Exhaust pressure estimation for diesel engines equipped with dual–loop EGR and VGT,” IEEE Trans. Control Syst. Technol. 99, 1–11 (2017).Google Scholar
  27. 27.
    M. van Nieuwstadt, P. Moraal, and I. Kolmanovsky, “Sensor selection for EGR–VGT control of a diesel engine,” in Proceedings of the Advances in Vehicle Control and Safety AVCS'98, Amiens, France, 1998, pp. 228–233.Google Scholar
  28. 28.
    H. J. Dekker and W. L. Sturm, “Simulation and control of a HD diesel engine equipped with new EGR technology,” SAE Paper 960871 (SAE Int., 1996).Google Scholar
  29. 29.
    R. Buratti, A. Carlo, E. Lanfranco, and A. di Pisoni, “Diesel engine with variable geometry turbocharger (VGT): a model–based boost pressure control stspeedgy,” Meccanica 32, 409–421 (1997).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. E. Belyaev
    • 1
    Email author
  • D. N. Gerasimov
    • 1
  • M. R. Rymalis
    • 2
  • S. A. Semenov
    • 3
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.NPO Enertek–Avtomatizirovannye systemySt. PetersburgRussia
  3. 3.OAO Kolomenskii zavodKolomnaRussia

Personalised recommendations