Scheduling in Multiprocessor Systems with Additional Restrictions

Systems Analysis and Operations Research

Abstract

An admissible multiprocessor preemptive scheduling problem is solved for the given execution intervals. In addition, a number of generalizations are considered—interprocessor communications are arbitrary and may vary in time; costs for processing interruptions and switches from one processor to another are taken into account; and besides the processors, additional resources are used. Algorithms based on reducing the original problem to finding paths of a specific length in a graph, a flow problem, and an integer system of linear restrictions are developed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Tanaev, V. S. Gordon, and Ya. M. Shafranskii, Scheduling Theory. One-Stage Systems (Nauka, Moscow, 1984) [in Russian].Google Scholar
  2. 2.
    T. Gonzales and S. Sahni, “Preemptive scheduling of uniform processor systems,” J. Assoc. Comput. Machin. 25, 92–101 (1978).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    A. Federgruen and H. Groenevel, “Preemptive scheduling of uniform machines by ordinary network flow technique,” Manage. Sci. 32, 341–349 (1986).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    P. Brucker, Scheduling Algorithms (Springer, Heidelberg, 2007).MATHGoogle Scholar
  5. 5.
    D. S. Guz and M. G. Furugyan, “Computation scheduling in multiprocessor real-time automatic control systems with constrained processor memory,” Autom. Remote Control 66, 295 (2005).CrossRefMATHGoogle Scholar
  6. 6.
    B. V. Grechuk and M. G. Furugyan, “Optimal preemptive scheduling in multiprocessor systems with incomplete communication graph,” Cybern. Syst. Anal. 41, 397–402 (2005).CrossRefMATHGoogle Scholar
  7. 7.
    E. O. Kosorukov and M. G. Furugyan, “Some algorithms for resource allocation in multiprocessor systems,” Moscow Univ. Comput. Math. Cybernet. 33, 202 (2009).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    M. G. Furugyan, “Computation planning in multiprocessor real time automated control systems with an additional resource,” Autom. Remote Control 76, 487 (2015).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    M. G. Furugyan, “Making schedules in multiprocessing systems with several additional resources,” J. Comput. Syst. Sci. Int. 56, 227 (2017).CrossRefGoogle Scholar
  10. 10.
    M. G. Furugyan, “Computation scheduling in multiprocessor systems with several types of additional resources and arbitrary processors,” Moscow Univ. Comput. Math. Cybernet. 41, 145 (2017).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A. A. Mironov and V. I. Tsurkov, “Hereditarily minimax matrices in models of transportation type,” J. Comput. Syst. Sci. Int. 37, 927 (1998).MATHGoogle Scholar
  12. 12.
    A. A. Mironov and V. I. Tsurkov, “Minimax under nonlinear transportation constraints,” Dokl. Math. 64, 351 (2001).MATHGoogle Scholar
  13. 13.
    A. A. Mironov and V. I. Tsurkov, “Transportation problems with minimax criteria,” Dokl. Math. 53, 119 (1996).MATHGoogle Scholar
  14. 14.
    A. A. Mironov and V. I. Tsurkov, “Minimax in transportation models with integral constraints: I,” J. Comput. Syst. Sci. Int. 42, 562 (2003).MATHGoogle Scholar
  15. 15.
    A. A. Mironov, V. V. Fedorchuk, and V. I. Tsurkov, “Minimax in transportation models with integral constraints: II,” J. Comput. Syst. Sci. Int. 44, 732 (2005).MATHGoogle Scholar
  16. 16.
    A. A. Mironov and V. I. Tsurkov, “Network models with fixed parameters at the communication nodes. 1,” J. Comput. Syst. Sci. Int. 32 (6), 1–11 (1994).MathSciNetMATHGoogle Scholar
  17. 17.
    A. A. Mironov and V. I. Tsurkov, “Network models with fixed parameters at the communication nodes. 2,” J. Comput. Syst. Sci. Int. 33 (3), 107–116 (1995).MathSciNetMATHGoogle Scholar
  18. 18.
    Yu. E. Malashenko and N. M. Novikova, “Analysis of multiuser network systems taking into account uncertainty,” J. Comput. Syst. Sci. Int. 37, 292 (1998).MATHGoogle Scholar
  19. 19.
    Yu. E. Malashenko and N. M. Novikova, “The analysis of multiuser network systems under uncertainty: 7. The problem of standard vulnerability analysis of a multicommodity flow network,” J. Comput. Syst. Sci. Int. 38, 589 (1999).MATHGoogle Scholar
  20. 20.
    Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms (The MIT Press, Cambridge, MA, 2009).MATHGoogle Scholar
  21. 21.
    B. Korte and J. Vygen, Combinatorial Optimization. Theory and Algorithms (Springer, Berlin, Heidelberg, 2006).MATHGoogle Scholar
  22. 22.
    D. T. Fillips and A. Garcia-Diaz, Fundamentals of Network Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1981).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Dorodnicyn Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations