Parameters optimization of the novel probabilistic algorithm for improving spatial resolution of multispectral satellite images

  • K. Yu. Gorokhovskiy
  • V. Yu. IgnatievEmail author
  • A. B. Murynin
  • K. O. Rakova
Pattern Recognition and Image Processing


A probabilistic method for improving the spatial resolution of multispectral space images using a reference image is proposed. The developed method calculates the mathematical expectation of pixel brightness in different channels of an improved multispectral image based on the probabilistic characteristics of the pixel neighborhood on the multispectral image and the overall brightness intensity of the panchromatic image at that point. The applicability of different metrics for evaluating the quality of the spatial resolution of satellite images is analyzed. A set of the most adequate quality evaluation metrics is used. An optimization procedure is developed to adjust the parameters of the proposed probabilistic resolution improvement method. The results of testing the method on the multi-spectral images obtained from different satellites in different spatial resolutions are presented. The efficiency of the algorithm is tested at different magnification scales. A comparative analysis of the results of the proposed method with similar approaches is conducted.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aerospace Monitoring of Objects of Oil and Gas Facilities, Ed. by V. G. Bondur (Nauchnyi Mir, Moscow, 2012) [in Russian].Google Scholar
  2. 2.
    A. Murynin, K. Gorokhovskiy, V. Bondur, and V. Ignatiev, “Analysis of large long-term remote sensing image sequence for agricultural yield forecasting,” in Proceedings of the 4th International Workshop on Image Mining, Theory and Applications IMTA-4 2013, with VISIGRAPP 2013, Barcelona, Spain (SCITERGRASS, Portugal, 2013), pp. 48–55.Google Scholar
  3. 3.
    V. N. Evdokimenkov, R. V. Kim, M. N. Krasil’shchikov, and G. G. Sebryakov, “The use of the neural network model of pilot control actions for their individually-adapted support,” J. Comput. Syst. Sci. Int. 54, 609 (2015).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Yu. V. Vizilter and S. Yu. Zheltov, “The use of projective morphologies for object detection and identification in images,” J. Comput. Syst. Sci. Int. 48, 282 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    A. A. Ishutin, I. S. Kikin, G. G. Sebryakov, and V. N. Soshnikov, “Algorithms for the detection, localization, and recognition of electro-optical images of the group of isolated ground locations for inertial-sighting systems of navigation and guidance of aircraft,” J. Comput. Syst. Sci. Int. 55, 242 (2016).CrossRefGoogle Scholar
  6. 6.
    V. G. Bondur, V. A. Dulov, A. B. Murynin, and V. Yu. Ignat’ev, “Retrieving sea-wave spectra using satelliteimagery spectra in a wide range of frequencies,” Izv., Atmos. Ocean. Phys. 52, 637 (2016).CrossRefGoogle Scholar
  7. 7.
    V. G. Bondur, A. B. Murynin, and V. Yu. Ignat’ev, “Parameters optimization in the problem of sea-wave spectra recovery by airspace images,” Mashin. Obuchen. Anal. Dannykh 2, 218–230 (2016).Google Scholar
  8. 8.
    A. A. Gurchenkov, V. G. Bochkareva, A. B. Murynin, and A. N. Trekin, “Image quality improvement by method of spatial spectrum extrapolation,” Vestn. MGTU Baumana, Ser.: Estestv. Nauki, No. 2 (65), 91–102 (2016).Google Scholar
  9. 9.
    V. G. Bochkareva, I. A. Matveev, A. B. Murynin, and V. I. Tsurkov, “Methods for improving image quality using spatial spectral analysis,” J. Comput. Syst. Sci. Int. 54, 897 (2015).CrossRefMathSciNetGoogle Scholar
  10. 10.
    P. Milanfar, Super-Resolution Imaging (CRC, Boca Raton, London, New York, 2011), p. 473.Google Scholar
  11. 11.
    G. Vivone, L. Alparone, J. Chanussot, M. dalla Mura, A. Garzelli, G. Licciardi, R. Restaino, and L. Wald, “A critical comparison among pansharpening algorithms,” IEEE Trans. Geosci. Remote Sens. 53 (5) (2015).Google Scholar
  12. 12.
    C. Thomas, T. Ranchin, L. Wald, and J. Chanussot, “Synthesis of multispectral images to high spatial resolution: a critical review of fusion methods based on remote sensing physics,” IEEE Trans. Geosci. Remote Sens. 46, 1301–1312 (2008).CrossRefGoogle Scholar
  13. 13.
    Yu. V. Vizilter, O. V. Vygolov, S. Yu. Zheltov, and A. Yu. Rubis, “A way to interconnect the multispectral images for improved vision systems by using the methods of diffusive morphology,” J. Comput. Syst. Sci. Int. 55, 598 (2016).CrossRefMathSciNetGoogle Scholar
  14. 14.
    P. S. Chavez, Jr.,_S. C. Sides, and A. J. Anderson, “Comparison of three different methods to merge multiresolution and multispectral data: landsat TM and SPOT panchromatic,” Photogramm. Eng. Remote Sens. 57, 295–303 (1991).Google Scholar
  15. 15.
    B. Aiazzi, S. Baronti, and M. Selva, “Improving component substitution pansharpening through multivariate regression of MS+Pan data,” IEEE Trans. Geosci. Remote Sens. 45, 3230–3239 (2007).CrossRefGoogle Scholar
  16. 16.
    T.-M. Tu, P. S. Huang, C.-L. Hung, and C.-P. Chang, “A fast intensity hue saturation fusion technique with spectral adjustment for IKONOS imagery,” IEEE Geosci. Remote Sens. Lett. 1, 309–312 (2004).CrossRefGoogle Scholar
  17. 17.
    W. Dou, Y. Chen, X. Li, and D. Sui, “A general framework for component substitution image fusion: an implementation using fast image fusion method,” Comput. Geosci. 33, 219–228 (2007).CrossRefGoogle Scholar
  18. 18.
    J. Choi, K. Yu, and Y. Kim, “A new adaptive component-substitution based satellite image fusion by using partial replacement,” IEEE Trans. Geosci. Remote Sens. 49, 295–309 (2011).CrossRefGoogle Scholar
  19. 19.
    B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, “MTF–tailore multiscale fusion of high-resolution MS and pan imagery,” Photogramm. Eng. Remote Sens. 72, 591–596 (2006).CrossRefGoogle Scholar
  20. 20.
    B. Owen Art, Monte Carlo Theory, Methods and Examples. Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • K. Yu. Gorokhovskiy
    • 1
  • V. Yu. Ignatiev
    • 1
    • 2
    Email author
  • A. B. Murynin
    • 1
    • 2
  • K. O. Rakova
    • 1
    • 3
  1. 1.Institute for Scientific Research of Aerospace Monitoring AEROCOSMOSMoscowRussia
  2. 2.Dorodnicyn Computing CentreFRC CSC RASMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations