Stabilization of a nonlinear multivariable discrete-time time-invariant plant with uncertainty on a linear pseudoinverse model

  • L. S. ZhitetskiiEmail author
  • V. I. Skurikhin
  • K. Yu. Solovchuk
Adaptive Control


This paper addresses the problem of the robust stabilization of a nonlinear multivariable time-invariant plant on a semi-infinite discrete time interval under arbitrary nonmeasurable bounded additive disturbances. A guaranteed value of the quality criterion is given by the functional representing the weighted sum of the limiting norms of the control vectors and output variables. To generate control actions, a controller containing a linear generalized inverse model and discrete-time integrators is introduced into the feedback loop. Sufficient conditions for the robust stability of the control system, as well as the conditions for the ultimate boundedness of all its signals (dissipativity conditions), are formulated. A corresponding simulation example is presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. M. Lyubchyk, “Disturbance rejection in linear discrete multivariable systems: inverse model approach,” in Proceedings of the 18th IFAC World Congress, Milano, Italy, 2011, pp. 7921–7926.Google Scholar
  2. 2.
    G. E. Pukhov and K. D. Zhuk, Synthesis of Interconnected Control Systems with the Method of Inverse Operators (Naukova Dumka, Kiev, 1966) [in Russian].Google Scholar
  3. 3.
    K. D. Zhuk, T. G. Pyatenko, and V. I. Skurikhin, “Problems of synthesis of controlling models in interconnected automatic systems,” in Proceedings of the Seminar on Mathematical Simulation Methods and Electrical Chain Theory, Kiev, 1964, pp. 3–17.Google Scholar
  4. 4.
    B. N. Petrov, P. D. Krut’ko, and E. P. Popov, “Construction of control algorithms as inverse dynamic problem,” Dokl. Akad. Nauk SSSR, No. 5, 1078–1081 (1979).zbMATHGoogle Scholar
  5. 5.
    V. I. Skurikhin, V. I. Gritsenko, L. S. Zhitetskii, and K. Yu. Solovchuk, “Generalized inverse operator method in the problem of the optimal controlling of linear interconnected static plants,” Dokl. NAN Ukrainy, No. 8, 57–66 (2014).zbMATHGoogle Scholar
  6. 6.
    E. Kofman, M. Seron, and H. Haimovich, “Control design with guaranteed ultimate bound for perturbed systems,” Automatica 44, 1815–1821 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    V. M. Kuntsevich, Control under Uncertainty: Guaranteed Results in Control and Identification Problems (Naukova Dumka, Kiev, 2006) [in Russian].Google Scholar
  8. 8.
    V. N. Afanas’ev, Control of Uncertain Dynamical Objects (Fizmatlit, Moscow, 2008) [in Russian].Google Scholar
  9. 9.
    B. T. Polyak and P. S. Shcherbakov, Robust Stability and Control (Nauka, Moscow, 2002) [in Russian].zbMATHGoogle Scholar
  10. 10.
    V. F. Sokolov, Robust Control under Limited Perturbations (Komi Nauch. Tsentr UrO RAN, Syktyvkar, 2011) [in Russian].Google Scholar
  11. 11.
    A. Isidori, Nonlinear Control Systems II (Springer, London, 1999).CrossRefzbMATHGoogle Scholar
  12. 12.
    V. N. Afanas’ev, “Guaranteed control concept for uncertain objects,” J. Comput. Syst. Sci. Int. 49, 22 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    V. A. Katkovnik and A. A. Pervozvanskii, “Methods of extremum search and problems of the synthesis of multidimensional control systems,” in Adaptive Automatic Systems, Ed. by G. A. Medvedev (Sovetskoe Radio, Moscow, 1972), pp. 17–42 [in Russian].Google Scholar
  14. 14.
    L. S. Zhiteckii, V. N. Azarskov, K. Yu. Solovchuk, and O. A. Sushchenko, “Discrete-time robust steady-state control of nonlinear multivariable systems: a unified approach,” in Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, 2014, pp. 8140–8145.Google Scholar
  15. 15.
    G. E. Pukhov and Ts. S. Khatiashvili, Models of Technological Processes (Tekhnika, Kiev, 1974) [in Russian].Google Scholar
  16. 16.
    M. Morari and E. Zafiriou, Robust Process Control (Prentice Hall, NJ, 1989).zbMATHGoogle Scholar
  17. 17.
    M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities (Univ. of California, Santa Barbara, Aliyn and Bacon, Boston, 1964).zbMATHGoogle Scholar
  18. 18.
    V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Computations (Nauka, Moscow, 1984) [in Russian].zbMATHGoogle Scholar
  19. 19.
    B. T. Polyak, Introduction to Optimization (Nauka, Moscow, 1983) [in Russian].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. S. Zhitetskii
    • 1
    Email author
  • V. I. Skurikhin
    • 1
  • K. Yu. Solovchuk
    • 1
  1. 1.International Research and Training Center for Information Technologies and Systems, National Academy of SciencesMinistry of Education and ScienceKievUkraine

Personalised recommendations