Estimates of near-circular orbits after a single correction: a geometrical method

  • A. A. Baranov
  • V. O. Vikhrachev
  • M. O. KaratunovEmail author
  • Yu. N. Razumnyi
Control Systems of Moving Objects


Estimates of the maneuvers of active space objects are considered. We propose analytical and numerical-analytical algorithms to estimate short-term and long-term one-impulse maneuvers for the case where the initial and final orbits are determined with errors. Both coplanar and noncoplanar maneuvers are considered. Special attention is given to the velocity and reliability of the solution of the problem. The process to find the solution has a geometrical interpretation. We provide examples of estimates for maneuvers of spacecraft located at geosynchronous orbits. The results obtained by the proposed method are compared with the results obtained by the traditional approach, excluding errors of orbit determination.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Kamensky, A. Tuchin, V. Stepanyants, and K. T. Alfriend, “Algorithm of automatic detection and analysis of non-evolutionary changes in orbital motion of geocentric objects,” in Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Hawaii, 2009, Paper AAS No. 09-103, pp. 1–34.Google Scholar
  2. 2.
    G. K. Borovin, M. V. Zakhvatkin, V. A. Stepan’yants, A. G. Tuchin, D. A. Tuchin, and V. S. Yaroshevskiy, “Identification of maneuvers performed by spacecraft,” Inzh. Zh.: Nauka Innov., No. 2, 8 (2012).Google Scholar
  3. 3.
    A. A. Baranov, “Numerical and analytical determination of manoeuvre parameters of spacecraft multiturn meeting at close near circular non-coplanar orbits,” Kosm. Issled. 46, 430 (2008).Google Scholar
  4. 4.
    A. A. Baranov, “On geometrical solution of the problem of meeting on close nearly circular coplanar orbits,” Kosm. Issled. 27, 808–816 (1989).Google Scholar
  5. 5.
    A. A. Baranov, A. F. B. de Prado, V. Yu. Razumny, and An. A. Baranov, “Optimal low-thrust transfers between close near-circular coplanar orbits,” Cosmic Res. 49, 269 (2011).CrossRefGoogle Scholar
  6. 6.
    A. A. Baranov and M. O. Karatunov, “A posteriori evaluation of maneuvers performed by active space objects,” Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Ser. Mashinostr., No. 5, 25–37 (2015).Google Scholar
  7. 7.
    G. E. Kuzmak and A. Z. Braude, “Approximate construction of optimal flights in a small neighborhood of a circular orbit,” Kosm. Issled. 7, 323–338 (1969).Google Scholar
  8. 8.
    A. A. Baranov and M. O. Karatunov, “Estimation of parameters of two coupled maneuvers performed by an active space object,” J. Comput. Syst. Sci. Int. 2, 284 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Baranov
    • 1
    • 2
  • V. O. Vikhrachev
    • 2
    • 3
  • M. O. Karatunov
    • 2
    • 3
    Email author
  • Yu. N. Razumnyi
    • 4
  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia
  3. 3.Astronomicheskii Nauchnyi TsentrMoscowRussia
  4. 4.People’s Friendship (RUDN) UniversityMoscowRussia

Personalised recommendations