Disturbance compensation in electric generator network control

Control Systems for Technological Processes

Abstract

The paper considers electric generator network control under conditions of parametric uncertainty and disturbing actions caused by the mechanical power nonstationarity and possible changes in transmission-line admittance. A decentralized control algorithm that maintains operator generation stability and network phase synchronization with the required accuracy is synthesized. Numerical examples and computational simulation results are presented illustrating the operation capability of the proposed control scheme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Dorofeev and A. A. Makarov, “Active-adaptive network—a new quality of UES of Russia,” Energoekspert, No. 4, 28–35 (2009).Google Scholar
  2. 2.
    M. Gordon and D. J. Hill, “Global transient stability and voltage regulation for multimachine power systems,” in Proceedings of the IEEE Power and Energy Society General Meeting on Conversion and Delivery of Electrical Energy in the 21st Century (2008), pp. 1–8.CrossRefGoogle Scholar
  3. 3.
    A. Barabanov, W. Dib, F. Lamnabhi-Lagarrigue, and R. Ortega, “On transient stabilization of multi-machine power systems: a “globally” convergent controller for structure-preserving models,” in Proceedings of the 17th International Federation of Automatic Control IFAC World Congress, Seoul, Korea, July 6–11, 2008, pp. 9398–9403.Google Scholar
  4. 4.
    A. A. Kuz’menko, “Nonlinear adaptive control of a turbogenerator,” J. Comput. Syst. Sci. Int. 47, 103–110 (2008).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    W. Dib, R. Ortega, and D. Hill, “Transient stability enhancement of multi-machine power systems: synchronization via immersion of pendular system,” Asian J. Control 16 1, 50–58 (2014).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    I. B. Furtat, “Robust control of electric generator with compensation of perturbations,” J. Comput. Syst. Sci. Int. 50, 785–792 (2011).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    A. N. Belyaev, S. V. Smolovik, A. V. Fradkov, and I. B. Furtat, “Robust control of electric generator in the case of time-dependent mechanical power,” J. Comput. Syst. Sci. Int. 52, 750 (2013).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    A. M. Tsykunov, “Robust control algorithms with compensation of bounded perturbations,” Autom. Remote Control 68, 1213 (2007).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    A. M. Tsykunov, “An algorithm of robust control of a non-stationary linear plant with perturbation compensation,” J. Comput. Syst. Sci. Int. 47, 527 (2008).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    A. N. Atassi and H. K. Khalil, “A separation principle for the stabilization of class of nonlinear systems,” IEEE Trans. Autom. Control 44 9, 1672–1687 (1999).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    I. B. Furtat, “Robust control for a specific class of non-minimum phase dynamical networks,” J. Comput. Syst. Sci. Int. 53, 33–46 (2014).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    V. A. Brusin, “On the one class of singularly perturbed adaptive systems 1,” Avtom. Telemekh., No. 4, 119–127 (1995).MathSciNetMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Problems of Mechanical Engineering Russian Academy of Sciences (IPME RAS)St. PetersburgRussia
  2. 2.ITMO University (Saint Petersburg National Research University of Information Technologies, Mechanics and Optics)St. PetersburgRussia

Personalised recommendations