Advertisement

Gravity assist maneuvers of a spacecraft in Jupiter system

  • Yu. F. GolubevEmail author
  • A. V. Grushevskii
  • V. V. Koryanov
  • A. G. Tuchin
Control Systems of Moving Objects

Abstract

Low cost tours in the Jovian system using gravity assist maneuvers near its large bodies are considered. Limited dynamic capabilities of the application of such maneuvers require multiple flybys of these bodies. Clearly, it is important to regularly design optimal scenarios of sequential flybys of celestial bodies and to elaborate conditions for their execution. The paper is devoted to the description of a technique for designing such chains of flybys. Examples of using this technique for the elaboration of specific versions of the Laplace-P mission are discussed.

Keywords

System Science International Celestial Body Keldysh Institute Spacecraft Trajectory Asymptotic Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Levantovskii, On a Rocket to the Moon (Fizmatlit, Moscow, 1960) [in Russian].Google Scholar
  2. 2.
    M. A. Minovitch, “The determination and characteristics of ballistic interplanetary trajectories under the influence of multiple planetary attractions,” Jet Propulsion Lab., Pasadena, Calif., Tech. Rept, 32–464 (1963).Google Scholar
  3. 3.
    G. B. Efimov, “Control problems in contingency during flight of a space vehicle with low thrust engine,” J. Comput. Syst. Sci. Int., 47, 603–612 (2008).CrossRefzbMATHGoogle Scholar
  4. 4.
    E. L. Akim, G. S. Zaslavskii, I. M. Morskoi, V. A. Stepan’yants, and A. G. Tuchin, “Ballistics, navigation, and control of flight of a spacecraft in the Phobos-sample-return project,” J. Comput. Syst. Sci. Int. 41, 818–826 (2002).Google Scholar
  5. 5.
    G. K. Borovin, Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, and A. G. Tuchin, “Flights in Jupiter system using gravity assist maneuvers near Galilean moons,” Preprint No. 72, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2013). http://library.keldysh.ru/preprint.asp?id=2013-72.Google Scholar
  6. 6.
    A. Boutonnet and J. Schoenmaekers, “Mission analysis for the JUICE mission,” AAS/AIAA Space Flight Mechanics Meeting, Charleston, 2012, AAS paper 12-207.Google Scholar
  7. 7.
    A. Boutonnet and J. Schoenmaekers, “JUICE: Consolidated report on mission analysis (CReMA),” Reference WP-578, No. 1, 2012.Google Scholar
  8. 8.
    A. Boutonnet, J. Schoenmaekers, and D. Garcia, “JGO: consolidated report on mission analysis (CReMA),” Tech. Rep., ESA, ESOC, Darmstadt, Germany, 2010.Google Scholar
  9. 9.
    Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, and A. G. Tuchin, “A method of orbit designing using gravity assist maneuvers to the landing on the Jupiter’s moon Ganymede,” in Third Moscow Solar System Symp., Moscow, 2012. http://ms2012.cosmos.ru/presentations.
  10. 10.
    Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, and A. G. Tuchin, “A method of orbits designing using gravity assist maneuvers to the landing on the Jovian’s moons,” in Int. Colloquium and Workshop Ganymede Lander, Moscow, 2013. http://glcw2013.cosmos.ru/presentations.
  11. 11.
    E. Barrabez, G. Gomez, and J. Rodriguez-Canabal, “Notes for the gravitational assisted trajectories,” in Advanced Topics in Astrodynamics (Barcelona, 2004). www.ieec.fcr.es/astro04/notes/gravity.pdf.Google Scholar
  12. 12.
    V. I. Levantovskii, Elementary Mechanics of Space Flight (Nauka, Moscow, 1980) [in Russian].Google Scholar
  13. 13.
    Navigation and Ancillary Information Facility (NAIF). http://naif.jpl.nasa.gov/naif/index.html. Cited June 8, 2013.
  14. 14.
    “Galilean satellite ephemeris.” ftp://naif.jpl.nasa.gov/pub/naif/generic-kernels/spk/satellites/jup230.bsp. Cited June 8, 2013.
  15. 15.
    C. F. Yoder, “Astrometric and geodetic properties of earth and the solar system.” http://www.agu.org/books/rf/v001/RF001p0001/RF001p0001.pdf. Cited September 8, 2010.
  16. 16.
    D. Senske, L. Prockter, R. Pappalardo, et al., “Science from the Europa Clipper mission concept: Exploring the habitability of Europa,” in Int. Colloquium and Workshop Ganymede Lander, Moscow, 2013. http://glcw2013.cosmos.ru/presentations.
  17. 17.
    “Optimization of Ganymede Approach Scheme using a sequence of gravity assist maneuvers,” Tech. Rep. No. 5-006-12, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2009) [in Russian].Google Scholar
  18. 18.
    “Elaboration of proposals for the flight to Jupiter and ballistic support of Jupiter and Europa mission on the Earth-Jupiter flight leg,” Tech. Rep. No. 5-012-09, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2009) [in Russian].Google Scholar
  19. 19.
    R. Woolley, “Endgame strategies for planetary moon orbiters,” PhD Thesis, Department of Aerospace Engineering Sciences, University of Colorado, Boulder, 2010.Google Scholar
  20. 20.
    M. Yu. Ovchinnikov, S. P. Trofimov, and M. G. Shirobokov, “Method of virtual trajectories for designing interplanetary missions with gravity assist maneuvers,” Preprint No. 9, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2012). http://library.keldysh.ru/preprint.asp?id=2012-9.Google Scholar
  21. 21.
    D. R. Myatt, V. M. Becerra, S. J. Nasuto, and J. M. Bishop, “Advanced global optimization for mission analysis and design,” Final Report, Ariadna id 03/4101, contract No. 18138/04/NL/MV, 2004. http://www.esa.int/gsp/ACT/doc/ACT-RPT-ARIADNA-03-4101-Rd.pdf.
  22. 22.
    S. Campagnola and R. P. Russell, “Endgame problem. Part 1: V-infinity leveraging technique and leveraging graph,” J. Guidance, Control, Dynamics 33, 463–475 (2010).CrossRefGoogle Scholar
  23. 23.
    S. Campagnola and R. P. Russell, “Endgame problem. Part 2: Multi-body technique and TP Graph,” J. Guidance, Control, Dynamics 33, 476–486 (2010).CrossRefGoogle Scholar
  24. 24.
    N. J. Strange, R. Russell, and B. Buffington, “Mapping the V globe,” in AAS/AIAA Astrodynamics Specialist Conference and Exhibit, Mackinac Island, Michigan, 2007, AAS paper 07-277.Google Scholar
  25. 25.
    S. Campagnola, P. Skerritt, and R. P. Russell, “Flybys in the planar, circular, restricted, three-body problem,” in Proc. of the AAS/AAIAA Astrodynamics Specialist Conference, Girdwood, Alaska, 2011, AAS paper 11-245.Google Scholar
  26. 26.
    S. Campagnola, A. Boutonnet, J. Schoenmaekers, D. J. Grebov, A. E. Petropoulos, and R. P. Russell, “Tisser-and-leveraging transfers,” in AAS/AIAA Space Flight Mechanics Meeting, Charleston, 2012, AAS paper 12-185.Google Scholar
  27. 27.
    H. Poincaré, Selected Works, Vol. 1. New Methods of Celestial Mechanics (Nauka, Moscow, 1971) [in Russian].Google Scholar
  28. 28.
    V. Szebehely, Theory of Orbits, the Restricted Problem of Three Bodies (Academic, New York, 1967; Nauka, Moscow, 1982).Google Scholar
  29. 29.
    F. F. Tisserand, Traité de Méchanique Céleste (Gauthier-Villars, Paris, 1896), Vol. 4.Google Scholar
  30. 30.
    M. F. Subbotin, Introduction to Theoretical Astronomy (Nauka, Moscow, 1968) [in Russian].Google Scholar
  31. 31.
    C. Uphoff, P. H. Roberts, and L. D. Friedman, “Orbit design concepts for jupiter orbiter missions,” J. Spacecraft 13(6), 348–355 (1976).CrossRefGoogle Scholar
  32. 32.
    A. V. Labunsky, O. V. Papkov, and K. G. Sukhanov, “Multiple gravity assist interplanetary trajectories,” in Earth Space Institute Book Series (Gordon and Breach, 1998), pp. 33–68.Google Scholar
  33. 33.
    N. J. Strange and J. M. Longuski, “Graphical method for gravity-assist trajectory design,” J. Spacecraft Rockets 39(1), 9–16 (2002).CrossRefGoogle Scholar
  34. 34.
    V. I. Arnol’d, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1974; Springer, New York, 1989).zbMATHGoogle Scholar
  35. 35.
    G. S. Landsberg, Optics (Nauka, Moscow, 1976) [in Russian].Google Scholar
  36. 36.
    Yu. F. Golubev, A. V. Grushevskii, and R. Z. Khairullin, “On the structure of reachability domain of descending spacecraft,” Preprint No. 78, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 1993).Google Scholar
  37. 37.
    Yu. F. Golubev, A. V. Grushevskii, and R. Z. Khairullin, “On the structure of reachability domain of descending spacecraft,” Kosm. Issl. 34(2), 180–189 (1996).Google Scholar
  38. 38.
    A. V. Grushevskii, “Constrauction of reachability domains of nonelastic anisotropic billiards.” Preprint No. 76, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2007). http://library.keldysh.ru/preprint.asp?id=2007-76.Google Scholar
  39. 39.
    I. M. Sobol’, Monte Carlo Method (Nauka, Moscow, 1978) [in Russian].zbMATHGoogle Scholar
  40. 40.
    M. V. Podzolko and I. V. Getselev, “Radiation conditions of mission to Jupiter’s moon Ganymede,” Int. Colloquium and Workshop Ganymede Lander, Moscow, 2013, pp. 4–8.Google Scholar
  41. 41.
    “Universal Mechanism (UM): Simulation of dynamics of mechanical systems.” http://www.umlab.ru. Cited September 8, 2010.

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Yu. F. Golubev
    • 1
    Email author
  • A. V. Grushevskii
    • 1
  • V. V. Koryanov
    • 1
  • A. G. Tuchin
    • 1
  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations