Advertisement

Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits

  • V. O. Bragin
  • V. I. Vagaitsev
  • N. V. Kuznetsov
  • G. A. Leonov
Stability

Abstract

An algorithm for searching hidden oscillations in dynamic systems is developed to help solve the Aizerman’s, Kalman’s and Markus-Yamabe’s conjectures well-known in control theory. The first step of the algorithm consists in applying modified harmonic linearization methods. A strict mathematical substantiation of these methods is given using special Poincare maps. Subsequent steps of the proposed algorithms rely on the modern applied theory of bifurcations and numerical methods of solving differential equations. These algorithms help find and localize hidden strange attractors (i.e., such that a basin of attraction of which does not contain neighborhoods of equilibria), as well as hidden periodic oscillations. One of these algorithms is used here to discover, for the first time, a hidden strange attractor in the dynamic system describing a nonlinear Chua’s circuit, viz. an electronic circuit with nonlinear feedback.

Keywords

Nonlinear System Periodic Solution System Science International Hide Attractor Automatic Control Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. A. Aizerman, “On a Problem Concerning Stability in “Large” of Dynamic Systems,” Usp. Mat. Nauk 4(4), 186–188 (1949).MathSciNetGoogle Scholar
  2. 2.
    A. M. Letov, Stability of Nonlinear Control Systems (GTTI, Moscow, 1955) [in Russian].Google Scholar
  3. 3.
    M. A. Aizerman and F. R. Gantmakher, Absolute Stability of Control Systems (Akad. Nauk SSSR, Moscow, 1963) [in Russian].Google Scholar
  4. 4.
    S. L. Lefschetz, Stability of Nonlinear Control Systems (Academic, New York, London, 1965).zbMATHGoogle Scholar
  5. 5.
    A. F. Filippov, Differential Equations with Different Right Sides (Nauka, Moscow, 1985) [in Russian].Google Scholar
  6. 6.
    I. G. Malkin, “On Stability of Automatic Control Systems,” Prikl. Mat. Mekh. 16(4), 495–499 (1952).MathSciNetzbMATHGoogle Scholar
  7. 7.
    N. P. Erugin, “On a Problem of the Stability Theory of Automatic Control Systems,” Prikl. Mat. Mekh. 16(5), 620–628 (1952).MathSciNetzbMATHGoogle Scholar
  8. 8.
    N. N. Krasovskii, “Theorems on Stability of Motions Determined by a System of Two Equations,” Prikl. Mat. Mekh. 16(5), 547–554 (1952).MathSciNetGoogle Scholar
  9. 9.
    V. A. Pliss, Certain Problems of Motion Stability (Leningr. Gos. Univ., Leningrad, 1958) [in Russian].Google Scholar
  10. 10.
    V. A. Yakubovich, “On Boundedness and Stability in Large of Solutions of Certain Nonlinear Differential Equations,” Dokl. Akad. Nauk SSSR 121(6), 984–986 (1958).MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. R. Efendiev and M. A. Balitinov, “On Asymptotic Stability in Large of a Nonlinear System,” Differets. Uravneniya 4(4), 618 (1968).MathSciNetGoogle Scholar
  12. 12.
    G. A. Leonov, “On Stability in Large of Nonlinear Systems in the Critical Case of Two Nonzero Roots,” Prikl. Mat. Mekh. 45(4), 752–755 (1981).MathSciNetGoogle Scholar
  13. 13.
    R. E. Kalman, “Physical and Mathematical Mechanisms of Instability in Nonlinear Automatic Control Systems,” Transactions of ASME 79, 553–566 (1957).MathSciNetGoogle Scholar
  14. 14.
    G. A. Leonov, D. V. Ponomarenko, and V. B. Smirnova, Frequency Methods for Nonlinear Analysis. Theory and Applications (World Sci., Singapore, 1996).zbMATHCrossRefGoogle Scholar
  15. 15.
    L. Markus and H. Yamabe, “Global Stability Criteria for Differential Systems,” Osaka Math. J 12, 305–317 (1960).MathSciNetzbMATHGoogle Scholar
  16. 16.
    A. A. Glutsyuk, “Asymptotic Stability of Linearization of a Vector Field in the Plane Having Singular Points Implies Global Stability,” Funktsional’nyi Analiz i Ego Prilozhenie 29(4), 17–30 (1995).MathSciNetGoogle Scholar
  17. 17.
    R. Fessler A Proof of the Two-dimensional Markus-Yamabe Stability Conjecture and a Generalization, Annedes. Polonici. Mathematici 62, 45–47 (1995).MathSciNetzbMATHGoogle Scholar
  18. 18.
    C. Gutierrez, “A Solution to the Bidimensional Global Asymptotic Stability Conjecture,” Ann. Inst. H. Poincare Anal. Non Lineaire 12, 627–671 (1995).MathSciNetzbMATHGoogle Scholar
  19. 19.
    A. Cima, A. Essen, A. Gasull, et al., Advances in Mathematics 131(2), 453–457 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    G. A. Leonov, “On the Necessity of a Frequency Condition of Absolute Stability of Stationary Systems in the Critical Case of a Pair of Purely Imaginaty Roots,” Dokl. Akad. Nauk SSSR 193(4), 756–759 (1970).MathSciNetGoogle Scholar
  21. 21.
    E. Noldus, “A Counterpart of Popov’s Theorem for the Existence of Periodic Solutions,” Int. J. Control 13, 705–719 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    N. M. Krylov and N. N. Bogolyubov, New Methods of Nonlinear Mechanics (Gostekhteorizdat, Moscow, 1934) [in Russian].Google Scholar
  23. 23.
    N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics (AN USSR, Kiev, 1937) [in Russian].Google Scholar
  24. 24.
    M. A. Aizerman, Lecture on Automatic Control Theory (Fizmatgiz, Moscow, 1958) [in Russian].Google Scholar
  25. 25.
    E. P. Popov, Computation of Nonlinear Automatic Systems Based on Harmonic Linearization (Sudpromgiz, Moscow, 1959) [in Russian].Google Scholar
  26. 26.
    E. P. Popov and I. P. Pal’tov, Approximative Methods of Investigation of Nonlinear Automatic Systems (Fizmatgiz, Moscow, 1960) [in Russian].Google Scholar
  27. 27.
    E. N. Rozenvasser, Oscillations of Nonlinear Systems (Nauka, Moscow, 1969) [in Russian].Google Scholar
  28. 28.
    J. C. Hsu and A. U. Meyer, Modern Control Principles and Applications (McGraw-Hill, New York, 1968; Mashinostroenie, Moscow, 1972).zbMATHGoogle Scholar
  29. 29.
    E. P. Popov, The Theory of Nonlinear Automatic Regulation and Control Systems (Nauka, Moscow, 1979).Google Scholar
  30. 30.
    V. A. Besekerskii and E. P. Popov, Automatic Control Systems Theory (Nauka, Moscow, 1975) [in Russian].Google Scholar
  31. 31.
    A. A. Pervozvanskii, Course of Automatic Control Theory (Nauka, Moscow, 1986) [in Russian].Google Scholar
  32. 32.
    H. K. Khalil, Nonlinear Systems (Prentice Hall, New Jersey, 2002).zbMATHGoogle Scholar
  33. 33.
    Ya. Z. Tsypkin, Theory of Relay Automatic Control Systems (Gostekhizdat, Moscow, 1955) [in Russian].Google Scholar
  34. 34.
    B. V. Bulgakov, “Auto-Oscillations of Control Systems,” Prikl. Mat. Mekh. 7(2), 97–108 (1943).MathSciNetzbMATHGoogle Scholar
  35. 35.
    B. V. Bulgakov, Oscillations (Gostekhizdat, Moscow, 1954) [in Russian].Google Scholar
  36. 36.
    M. A. Aizerman, “Physical Foundations of Application of Small parameter Methods to Solving Nonlinear Problems of Automatic Control Theory,” Avtom. Telemekh. 14(5), 597–603 (1953).Google Scholar
  37. 37.
    E. D. Garber and E. N. Rozenvasser, “On Investigation of Periodic Modes of Nonlinear Systems Based on Filter Hypothesis,” Avtom. Telemekh. 26(2), 277–287 (1965).Google Scholar
  38. 38.
    A. R. Bergen and R. L. Franks, “Justification of the Describing Function Method,” SIAM J. Control 9(4), 568–589 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    A. I. Mees and A. R. Bergen, “Describing Functions Revisited,” IEEE Trans. Autom. Control AC-20(4), 473–478 (1975).MathSciNetCrossRefGoogle Scholar
  40. 40.
    B. Van der Pol, “Forced Oscillations in a Circuit with Nonlinear Resistance (Receptance with Reactive Triode),” Edinburgh and Dublin Philosophical Magazine, 3, 65–80 (1927).Google Scholar
  41. 41.
    A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillations (Nauka, Moscow, 1937) [in Russian].Google Scholar
  42. 42.
    J. J. Stoker, Nonlinear Vibrations in Mechanical and Electric Systems (Wiley, New York, 1995; Inostrannaya Literatura, Moscow, 1952) [in Russian].Google Scholar
  43. 43.
    K. F. Teodorchik, Auto-Oscillation Systems, 3rd Ed. (GITTL, Moscow, 1952) [in Russian].Google Scholar
  44. 44.
    G. S. Gorelik, Oscillations and Waves, 2nd Ed. (Fizmatlit, Moscow, 1959) [in Russian].Google Scholar
  45. 45.
    G. A. Leonov, “On Harmonic Linearization Method,” DAN. Mekhanika 424(4), 462–464 (2009).zbMATHGoogle Scholar
  46. 46.
    G. A. Leonov, “On Harmonic Linearization Method,” Avtom. Telemekh. 5, 65–75 (2009).MathSciNetGoogle Scholar
  47. 47.
    G. A. Leonov, “On Aizerman’s Problem,” Avtom. Telemekh. 7, 37–49 (2009).MathSciNetGoogle Scholar
  48. 48.
    G. A. Leonov, “Efficient Methods of searching Periodic Oscillations in Dynamic Systems,” Prikl. Mat. Mekh. 74(1), 37–73 (2010).MathSciNetGoogle Scholar
  49. 49.
    E. N. Lorenz, “Deterministic Nonperiodic Flow,” J. Atmos. Sci. 20, 130–141 (1963).CrossRefGoogle Scholar
  50. 50.
    O. E. Rössler, “An Equation for Continuous Chaos,” Phys. Lett. 57A, 397–398 (1976).Google Scholar
  51. 51.
    G. A. Leonov, Control Theory (S.-Peterb. Gos. Univ., St. Petersburg, 2006) [in Russian].Google Scholar
  52. 52.
    A. N. Kolmogorov and S. V. Fomin, Elements of Function Theory and Functional Analysis (FIZMATLIT, Moscow, 2004) [in Russian].Google Scholar
  53. 53.
    G. A. Leonov, V. I. Vagaitsev, and N. V. Kuznetsov, “An Algorithm of Localization of Chua Attractors Based on the Harmonic Linearization Method,” DAN. Matematika 433(3), 323–326 (2010).MathSciNetGoogle Scholar
  54. 54.
    V. I. Vagaitsev, N. V. Kuznetsov, and G. A. Leonov, “Localization of Attractors of the Chua Generalized System Based on the Harmonic Linearization Method,” Vestnik Sankt-Peterburgskogo Universiteta 1(4), 62–76 (2010).MathSciNetGoogle Scholar
  55. 55.
    V. O. Bragin, N. V. Kuznetsov, and G. A. Leonov, “Algorithm for Counterexamples Construction for Aizerman’s and Kalman’s Conjectures,” Proceedings of 4th IFAC Worlshop on Periodic Control System, 2010.Google Scholar
  56. 56.
    G. A. Leonov, V. O. Bragin, and N. V. Kuznetsov, “an Algorithm for Constructing Counterexamples to Kalman’s Problem,” DAN. Matematika 433(2), 163–166 (2010).Google Scholar
  57. 57.
    V. Blondel and A. Megretski, Unsolved Problems in Mathematical Systems and Control Theory (Princeton University Press, Princeton, 2004).Google Scholar
  58. 58.
    J. C. Hsu and A. U. Meyer, Modern Control Principles and Applications (McGraw-Hill, 1968).Google Scholar
  59. 59.
    L. C. Westphal, Handbook of Control Systems Engineering (Springer, Berlin, 2001).Google Scholar
  60. 60.
    R. E. Fitts, “Two Counterexamples to Aizerman’s Conjecture,” Trans. IEEE AC-11(3), 553–556 (1966).Google Scholar
  61. 61.
    N. E. Barabanov, “Mathematical Life in the USSR. In Leningrad Mathematical Society,” Usp. Mat. Nauk 37(1), 163–167 (1982).MathSciNetGoogle Scholar
  62. 62.
    N. E. Barabanov, “On Kalman’s Problem,” Sib. Mat. Zh. 29(3), 3–11 (1988).MathSciNetGoogle Scholar
  63. 63.
    J. Bernat and J. Llibre, “Counterexample to Kalman and Markus-Yamabe Conjectures in Dimension Larger Than 3,” Dynam. Contin. Discrete Impuls. Systems 2(3), 337–379 (1996).MathSciNetzbMATHGoogle Scholar
  64. 64.
    A. A. Andronov and A. G. Maier, “On the Vyshnegradkii Problem in the Theory of Direct Control,” Avtom. Telemekh. 8(5) (1947).Google Scholar
  65. 65.
    A. Kh. Gelig, G. A. Leonov, and V. A. Yakubovich, Stability of Nonlinear Systems with a Nonunique Equilibrium State (Nauka, Moscow, 1987) [in Russian].Google Scholar
  66. 66.
    G. Meisters, A Biography of the Markus-Yamabe Conjecture, 1996, http://www.math.unl.edu/gmeisters1/papers/HK1996.pdf.
  67. 67.
    A. A. Glutsyuk, “Markus-Yamabe Problem in Global Stability: Two-Dimensional Proof and Tree-Dimensional Counterexample,” Usp. Mat. Nauk 53(2), 169–172 (1998).Google Scholar
  68. 68.
    R. Genesio, A. Tesi, and F. Villoresi, “A Frequency Approach for Analyzing and Controlling Chaos in Nonlinear Circuits,” IEEE Trans. on Circuits and Systems I-fundamental Theory and Applications 40(11), C. 819–828 (1993).zbMATHCrossRefGoogle Scholar
  69. 69.
    M. Basso, L. Giovanardi, R. Genesio, et al., “An Approach for Stabilizing Periodic Orbits in Nonlinear Systems,” in Proceedings of European Control Conference, Karlsruhe, Germany, 1999.Google Scholar
  70. 70.
    L. O. Chua and G. N. Lin, “Canonical Realization of Chua’s Circuit Family,” IEEE Trans. on Circuits and Systems 37(4), 885–902 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    L. O. Chua, “The Genesis of Chua’s Circuit,” Archiv fur Elektronik und Ubertragungstechnik 46, 250–257 (1992).Google Scholar
  72. 72.
    L. O. Chua, “A Zoo of Strange Attractors from the Canonical Chua’s Circuits,” in Proceedings of the 35th IEEE Midwest Symposium on Circuits and Systems, (Cat. No.92CH3099-9), Washington, USA, 1992, Vol. 2, pp. 916–926.Google Scholar
  73. 73.
    L. O. Chua, “Global Unfolding of Chua’s Circuit,” IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences E76-A, 704–734 (1993).Google Scholar
  74. 74.
    L. O. Chua, “A Glimpse of Nonlinear Phenomena from Chua’s Oscillator,” Philosophical Transactions: Physical Sciences and Engineering 353, 3–12 (1701).MathSciNetCrossRefGoogle Scholar
  75. 75.
    L. O. Chua, L. Pivka, and C. W. Wu, “A Universal Circuit for Studying Chaotic Phenomena,” Philosophical Transactions: Physical Sciences and Engineering 353(1701), 65–84 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    E. Bilotta and P. Pantano, “A Gallery of Chua Attractors,” World Scientific Series on Nonlinear Science, Series A 61 (2008).Google Scholar
  77. 77.
    G. A. Leonov and N. V. Kuznetsov, “Time-Varying Linearization and the Perron Effects,” Int. Journal of Bifurcation and Chaos 17(4), 1079–1107 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    G. Q. Zhong and F. Ayrom, “Periodicity and Chaos in Chua’s Circuit,” IEEE Trans. on Circuits and Systems CAS-32(5), 501–503 (1985).MathSciNetCrossRefGoogle Scholar
  79. 79.
    J. A. K. Suykens and J. Vandewalle, “Generation of n-Double Scrolls (n = 1, 2, 3, 4, …),” IEEE Trans. on Circuits and Systems,” I: Fundamental Theories and Applications 40(11), 861–867 (1993).zbMATHCrossRefGoogle Scholar
  80. 80.
    J. A. K. Suykens, A. Huang, and L. O. Chua, “A Family of N-Scroll Attractors from a Generalized Chua’s Circuit,” AEU-Int. J. Electronics & Communications 51(3), 131–138 (1997).Google Scholar
  81. 81.
    M. E. Yalcin, J. A. K. Suykens, and J. Vandewalle, “On the Realization of N-Scroll Attractors,” in Proceedings of IEEE International Symposium on Circuits and Systems, Orlando, USA, 1999, Vol. 5, pp. 483–486.Google Scholar
  82. 82.
    M. E. Yalcin, J. A. K. Suykens, and J. Vandewalle, “Experimental Confirmation of 3- and 5-Scroll Attractors from a Generalized Chua’s Circuit,” IEEE Trans. on Circuits and Systems,” Part I: Fundamental Theory and Applications 47(3), 425–429 (2000).CrossRefGoogle Scholar
  83. 83.
    J. A. K. Suykens, M. E. Yalcin, and J. Vandewalle, “A Generic Class of Chaotic and Hyperchaotic Circuits with Synchronization Methods,” Chaos in Circuits and Systems (2002).Google Scholar
  84. 84.
    K. S. Tang, K. F. Man, G. Q. Zhong, et al., “Some New Circuit Design for Chaos Generation,” Chaos in Circuits and Systems, Ser. B 11, 151–170 (2002).Google Scholar
  85. 85.
    K. S. Tang, G. Q. Zhong, K. F. Man, and G. Chen, “A Systematic Approach to Generating N-Scroll Attractors,” Intern. J. Bifurcation and Chaos 12(12), 2907–2915 (2002).CrossRefGoogle Scholar
  86. 86.
    F. A. Savaci and S. Gunel, “Harmonic Balance Analysis of the Generalized Chua’s Circuit,” Int. J. Bifurcation and Chaos 16(8), 2325–2332 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    N. V. Kuznetsov, G. A. Leonov, and V. I. Vagaitsev, “Analytical-Numerical Method for Localization of Attractors of Generalization Chua System,” in Proceedings of 4th IFAC Workshop on Periodic Control Systems, Antalia, Turkey, 2010.Google Scholar
  88. 88.
    G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, “Localization of Hidden Chua’s attractors,” Physics Letters A. 2011 (doi:10.1016/j.physleta.2011.04.037).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. O. Bragin
    • 1
  • V. I. Vagaitsev
    • 1
  • N. V. Kuznetsov
    • 1
  • G. A. Leonov
    • 1
  1. 1.St. Petersburg State UniversitySt.-PetersburgRussia

Personalised recommendations