Synthesis of stabilizing spacecraft control based on generalized Ackermann’s formula

  • N. E. Zubov
  • E. A. Vorob’eva
  • E. A. Mikrin
  • M. Sh. Misrikhanov
  • V. N. Ryabchenko
  • S. N. Timakov
Control Systems of Moving Objects

Abstract

Problem of modal synthesis of controllers and observers using the generalized Ackermann’s formula is solved for a spacecraft as a complex dynamic system with high interconnections. All possible controller matrices (the whole set of controllers) are obtained for solution of the problem of stabilization of orbital orientation of the spacecraft in inseparable channels of bank and yaw angles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Kailath, Linear Systems (Prentice Hall, Englewood Cliffs, N. J., 1980).MATHGoogle Scholar
  2. 2.
    R. Dorf and R. Bishop, Modern Control Systems (Pearson Education, Inc., Pearson Prentice Hall, 2007; Laboratoriya bazovykh znanii, Moscow, 2002).Google Scholar
  3. 3.
    E. M. Smagina, Problems of Linear Multivariable System Analysis Using the Concept of System Zeros (Tomsk State University, Tomsk, 1990) [in Russian].Google Scholar
  4. 4.
    Yu. N. Andreev, Control of Finite-Dimensional Linear Objects (Nauka, Moscow, 1976) [in Russian].Google Scholar
  5. 5.
    M. Sh. Misrikhanov and V. N. Ryabchenko, “Modal Synthesis of Control for Energy System Based on Generalized Ackermann’s Formula”, in Proceedings of XV International Conference on Automatic Control, vol. 1, Odessa, Ukraine, 2008, 362–365.Google Scholar
  6. 6.
    M. Sh. Misrikhanov and V. N. Ryabchenko, “Algebraic and Matrix Methods in the Theory of linear MIMO Systems,” Vestn. IGEU, No. 5, 196–240 (2005).Google Scholar
  7. 7.
    B. V. Raushenbakh and E. N. Tokar’, Control of Spacecraft Orientation (Nauka, Moscow, 1974) [in Russian].Google Scholar
  8. 8.
    N. S. Timakov, “Studies of Controllable Angular Motion of a Spacecraft on Highly Elliptical Orbit”, in Proceedings of IX Conference of Young Scientists, St. Petersburg, Russia, 2007, 330–336.Google Scholar
  9. 9.
    W. M. Wonham, Linear Multivariable Control: A Geometric Approach (Springer Verlag, New York, 1979; Nauka, Moscow, 1980).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. E. Zubov
    • 1
  • E. A. Vorob’eva
    • 1
  • E. A. Mikrin
    • 1
  • M. Sh. Misrikhanov
    • 1
  • V. N. Ryabchenko
    • 1
  • S. N. Timakov
    • 1
  1. 1.S.P. Korolev Rocket and Space Corporation “Energia”Moscow reg.Russia

Personalised recommendations