Control of investment portfolio based on complex quantile risk measures

  • E. M. Bronshtein
  • M. M. Kachkaeva
  • E. V. Tulupova
Control in Organizational and Social-Economic Systems

Abstract

Combined measures of financial risks, which are convex combinations of known measures VaR and CVar and their analogues for right-hand tails of investment portfolio profitability distribution functions, are considered. Two-stage optimization procedure is developed for estimation of efficiency of proposed measures. Results of numerical experiment are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Albrecht, Risk Measures. Encyclopedia of Actuarial Science (Willey, 2004).Google Scholar
  2. 2.
    G. Pflug, How to measure risk? Modelling and Decisions in Economics (Springer-Verlag, 1999).Google Scholar
  3. 3.
    R. Rachev, S. Ortobelli, S. Stoyanov, et al., “Desirable Properties of An Ideal Risk Measure in Portfolio Theory,” Intern. J. Theoretical and Applied Finance 11(1), 19–54 (2008).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Risk Measures for the 21st Century, ed. by G. Szego (Willey, 2004).Google Scholar
  5. 5.
    B. Stone, “A General Class of Three-Parameter Risk Measures,” J. Finance, No. 28, 675–685 (1973).Google Scholar
  6. 6.
    P. Artzner, F. Delbaen, J.-M. Eber, et al., “Coherent Measures of Risk,” Math. Finance, No. 3, 203–228 (1999).Google Scholar
  7. 7.
    I. S. Men’shikov and D. A. Shelagin, Market Risks: Models and Methods (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2000) [in Russian].Google Scholar
  8. 8.
    G. Holton, Value-at-Risk: Theory and Practice (Acad. Press, 2003).Google Scholar
  9. 9.
    “Basel II: International Convergence of Capital Measurement and Capital Standards: A Revised Framework” (http://www.bis.org/publ/bcbs107.htm; Russian transl. http://www.cbr.ru/today/pk/Basel.pdf).
  10. 10.
    T. Rockafellar and S. Uryasev, “Optimization of Conditional Value-At-Risk,” J. Risk, No. 3, 21–41 (2000).Google Scholar
  11. 11.
    J. Dhaene, S. Vanduffel, M. J. Goovarts, et al., “Risk Measures and Comonotonicity: a Review,” Stochastic Models, No. 22, 573–606 (2006).Google Scholar
  12. 12.
    E. M. Bronshtein and Yu. V. Kurelenkova, “Optimization of Investment Portfolio Based on Complex Risk Measures”, Upravlen. Riskom, No. 4, 14–22 (2008).Google Scholar
  13. 13.
    E. Bronshtein and Ju. Kurelenkova, “Complex Risk Measures in Portfolio Optimization,” in Proceedings of 5th Conference in Actuarial Science and Finance on Samos, Samos, 2009, 77–82.Google Scholar
  14. 14.
    A. Krzemienowski, “Risk Preference Modeling with Conditional Average: an Application to Portfolio Optimization,” Ann Oper. Res., No. 165, 67–95 (2009).Google Scholar
  15. 15.
    H. Markowitz, Portfolio selection (John Willey & Sons, 1959).Google Scholar
  16. 16.
    Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques (Springer, 2010).Google Scholar
  17. 17.
    Z. Chen and Yi. Wang, “Two-Sided Coherent Risk Measures and Their Application in Realistic Portfolio Optimization,” J. Banking & Finance, No. 32(12), 2667–2673 (2008).Google Scholar
  18. 18.
    M. B. Lagutin, Pictorial Mathematical Statistics (BINOM. Laboratoriya znanii, Moscow, 2007) [in Russian].Google Scholar
  19. 19.

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • E. M. Bronshtein
    • 1
  • M. M. Kachkaeva
    • 1
  • E. V. Tulupova
    • 1
  1. 1.Ufa State Aviation Technical UniversityUfaRussia

Personalised recommendations