Correcting devices of control systems for deformation of multilayered piezodrives of nano- and micrometric movements

  • S. M. Afonin
Control Systems for Technological Processes

Abstract

Transfer functions of multilayered piezodrives of nano- and micrometric movements are obtained for longitudinal and transverse piezoelectric effect, piezodrive characteristics are corrected using built-in piezo sensor. Correcting devices are chosen for providing high quality of control systems for deformation of multilayered piezodrives and required index of oscillation. Absolute stability conditions of control systems for deformation of multilayered piezodrives of nano- and micrometric movements for longitudinal and transverse piezoelectric effect are determined.

References

  1. 1.
    V. L. Mironov, Basics of Scanning Probe Microscopy (Tekhnosfera, Moscow, 2004) [in Russian].Google Scholar
  2. 2.
    R. G. Dzhagupov and A. A. Erofeev, Piezoelectronic Devices of Computers and Automatic Control Systems. Reference Book (Politekhnika, St. Petersburg, 1994) [in Russian].Google Scholar
  3. 3.
    Physical Acoustics. Principles and Methods, vol. 1, part A, ed. by W. P. Mason (Academic Press, New York, 1964; Mir, Moscow, 1966).MATHGoogle Scholar
  4. 4.
    S. M. Afonin, “Piezo Converters for Drives of Micrometric Movements,” Prib. Sist. Upr., No. 2, 41–42 (1998).Google Scholar
  5. 5.
    S. M. Afonin, “A Generalized Structural-Parametric Model of an Electromagnetoelastic Converter for Nano- and Micrometric Movement Control Systems: III. Transformation of Parametric Structural Circuits of an Electromagnetoelastic Converter for Nano- and Micrometric Movement Control Systems,” Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 2, 158–166 (2006) [Comp. Syst. Sci. 45 (2), 317–325 (2006)].Google Scholar
  6. 6.
    S. M. Afonin, “Investigation of Static and Dynamic Characteristics of a Piezomotor for Nano- and Micrometric Movements,” Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 5, 114–121 (2008) [Comp. Syst. Sci. 47 (5), 778–785 (2008)].Google Scholar
  7. 7.
    S. M. Afonin, “Absolute Stability Conditions for the Control System of Deformation of an Electromagnetoelastic Converter for Nano- and Micrometric Movements,” Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 1, 120–126 (2008) [Comp. Syst. Sci. 47 (1), 111–117 (2008)].Google Scholar
  8. 8.
    B. N. Naumov, Theory of Nonlinear Automatic Systems: Frequency Methods (Nauka, Moscow, 1972) [in Russian].Google Scholar
  9. 9.
    B. N. Naumov, “Frequency Method of Absolute Stability and Quality of Nonlinear Systems and Systems with Time-Variable Parameters for Given and Random Impact”, in MultiVariable and Invariant Systems. Nonlinear and Discrete Systems, ed. V. A. Trapeznikov (Nauka, Moscow, 1968), 254–270 [in Russian].Google Scholar
  10. 10.
    N. E. Barabanov and V. A. Yakubovich, “Absolute Stability of Control Systems with One Hysteresis Nonlinearity,” Avtom. Telemekh., no. 12, 5–12 (1979).Google Scholar
  11. 11.
    V. A. Besekerskii and E. P. Popov, Theory of Automatic Control Systems (Professiya, Moscow, 2004) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • S. M. Afonin
    • 1
  1. 1.Moscow Institute of Electronic Technology (Technical University)MoscowRussia

Personalised recommendations