Injection engine as a control object. II. Problems of automatic control of the engine

  • D. N. Gerasimov
  • H. Javaherian
  • D. V. Efimov
  • V. O. Nikiforov
Control Systems of Moving Objects


Specific features of injection engine as a control object are discussed, strict formulations of problems of engine automatic control and principles of their solution are presented. Examples of solution of the problem of stabilization of air-fuel ratio and engine torque control problems are presented as illustrations for demonstration of application of modern methods of automatic control theory for solution of control problems of injection engines.


System Science International Automatic Control System Spark Ignition Engine Intake Manifold Fuel Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Cichy and M. Konczakowski, “Bond Graph Model of the IC engine as an Element of Energetic Systems”, Mechan. Machine Theor., vol. 36,no. 6, 683–687 (2001).zbMATHCrossRefGoogle Scholar
  2. 2.
    P. Dickinsona and A. T. Shenton, “Dynamic Calibration of Fuelling in the PFI SI Engine”, Contr. Engineer. Pract., vol. 17, 26–38 (2009).CrossRefGoogle Scholar
  3. 3.
    J. A. Cook, I. V. Kolmanovsky, D. McNamara, et al., “Control, Computing and Communications: Technologies for the Twenty-First Century Model,” in IEEE Proceedings 95, 334–355 (2007).CrossRefGoogle Scholar
  4. 4.
    A. A. Malikopoulos, P. Y. Papalambros, and D. N. Assanis, “Learning Algorithms for Optimal Internal Combustion Engine Calibration in Real Time”, in Proceedings of ASME International Information in Engineering, Las Vegas, NV, USA, 2007, 1–10.Google Scholar
  5. 5.
    D. Sawada and T. Shigematsu, “Improvement of Spark Ignition Knock Detector Performance by Learning Control”, SAE paper no. 810057 (1981).Google Scholar
  6. 6.
    I. V. Miroshnik, V. O. Nikoforov, and A. L. Fradkov, Nonlinear and Adaptive Control of Complex Dynamic Systems (Nauka, St. Petersburg, 2000) [in Russian].Google Scholar
  7. 7.
    V. O. Nikiforov, Adaptive and Robust Control with Compensation of Perturbations (Nauka, St. Petersburg, 2003) [in Russian].Google Scholar
  8. 8.
    V. O. Nikoforov, “Adaptive Stabilization of a Linear Object Subjected to Exterior Deterministic Perturbations”, Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 2, 103–106 (1997) [Comp. Syst. Sci. 36 (2), 258–261 (1997)].Google Scholar
  9. 9.
    V. O. Nikoforov, “Nonlinear Control System with Compensation of External Deterministic Perturbations”, Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 2, 69–73 (1997) [Comp. Syst. Sci. 36 (4), 564–568 (1997)].Google Scholar
  10. 10.
    A. A. Bobtsov, “Algorithms for Adaptive Control of Nonlinear Dynamic Objects with Uncertainties at Input”, Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 1, 35–39 (2003) [Comp. Syst. Sci. 42 (1), 31–35 (2003)].Google Scholar
  11. 11.
    A. A. Bobtsov and A. S. Kremlev, “Observer Synthesis in the Compensation Problem for a Finite-Dimensional Quasi-Harmonic Disturbance”, Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 3, 5–11 (2005) [Comp. Syst. Sci. 44 (3), 331–337 (2005)].Google Scholar
  12. 12.
    A. A. Bobtsov and N. A. Nikolaev, “Control Law Synthesis for Stabilizing a Nonlinear System Based on Out-put Measurements with Compensation of Unknown Disturbance”, Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 5, 5–11 (2005) [Comp. Syst. Sci. 44 (5), 682–688 (2005)].Google Scholar
  13. 13.
    A. Stotsky, B. Egart, and S. Eriksson, “Variable Structure Control of Engine Idle Speed with Estimation of Unmeasurable Disturbances,” in Proceedings of IEEE Conference on Decision and Control, Phoenix, AR, USA, 1999.Google Scholar
  14. 14.
    P. Andersson and L. Eriksson, “Air-To-Cylinder Observer on a Turbocharged SI-Engine with Wastegate,” SAE paper no. 2001-01-0262 (2001).Google Scholar
  15. 15.
    O. Barbarisi, A. Gaeta, L. Glielmo, et al., “An Extended Kalman Observer for the In-Cylinder Air Mass Flow Estimation,” in Proceedings of MECA02 International Workshop on Diagnostics in Automotive Engines and Vehicles, Fisciano SA, Italy, 2002.Google Scholar
  16. 16.
    C.-F. Chang, N. P. Fekete, and J. D. Powell, “Engine Air-To-Fuel Ratio Control Using An Event-Based Observer,” SAE paper, No. 930766 (1993).Google Scholar
  17. 17.
    G. Fiengo, J. A. Cook, and J. W. Grizzle, “Experimental Results on Dual UEGO Active Catalyst Control”, in Proceedings of First IFAC Symp. On Advances in Automotive Control, Salerno, Italy, 2004.Google Scholar
  18. 18.
    Y. W. Kim, G. Rizzoni, and V. I. Utkin, “Automotive Engine Diagnosis and Control via Nonlinear Estimation,” IEEE Control Systems (1998).Google Scholar
  19. 19.
    I. Arsie, C. Pianese, G. Rizzo, et al., “An Adaptive Estimator of Fuel Film Dynamics in the Intake Port of a Spark Ignition Engine,” Control Engineering Practice, 11(3), 303–309 (2003).CrossRefGoogle Scholar
  20. 20.
    E. M. Franceschi, K. R. Muske, J. C. Peyton-Jones, et al., “An Adaptive Delay-Compensated PID Air Fuel Ratio Controller”, in Proceedings of SAE World Congress and Exhibition, Detroit, USA, 2007.Google Scholar
  21. 21.
    A. Ghaffari, A. H. Shamekhi, A. Saki, et al., “Adaptive Fuzzy Control for Air-Fuel Ratio of Automobile Spark Ignition Engine”, in Proceedings fo World Acad. Science, Engineering, Technology, 1064–1072 (2008).Google Scholar
  22. 22.
    P. Moraal, D. Meyer, J. Cook, et al., “Adaptive Transient Fuel Compensation: Implementation and Experimental Results,” SAE paper no. 2000-01-0550 (2000).Google Scholar
  23. 23.
    R. C. Turin and H. P. Geering, “Model-Reference Adaptive A/F-Ratio Control in an SI Engine Based on Kalman-Filtering Technique”, in Proceedings of American Control Conference, 4082-2090, Seeatle WA, USA, 1995.Google Scholar
  24. 24.
    Y. Zhai and D. Yu, “RBF ased Feedforward Feedback Control for Air-Fuel Ratio of SI Engines”, in Proceedings of IFAC Workshop on Advanced Fuzzy and Neural Control, Valenciennes, France, 2007.Google Scholar
  25. 25.
    A. G. Stefanopoulou, J. A. Cook, J. S. Freudenberg, et al., “Control-Oriented Model of a Dual Equal Variable Cam Timing Spark Ignition Engine”, ASME J. Dynamics Syst., Meas., Contr., 120, 257–266 (1998).CrossRefGoogle Scholar
  26. 26.
    A. G. Stefanopoulou, J. S. Freudenberg, and W. Grizzle, “Variable Camshaft Timing Engine Control”, IEEE Trans. Control Syst. Technol., 1, 23–33 (2000).CrossRefGoogle Scholar
  27. 27.
    R. A. Stein, K. M. Galietti, and T. G. Leone, “Dual Equal VCT-A Variable Camshaft Timing Strategy for Improved Fuel Economy and Emissions”, SAE paper no. 950975 (1995).Google Scholar
  28. 28.
    T. Huang, D. Liu, H. Javaherian, et al., “Neural Sliding-Mode Control of Engine Torque”, in Proceedings of 17th IFAC World Congress, Seoul, Korea, 2008, 9453–9458.Google Scholar
  29. 29.
    M. Jankovic, F. Frischmuth, A. G. Stefanapoulou, et al., “Torque Management of Engines with Variable Cam Timing”, IEEE Contr. Syst. Mag., 18, 34–42 (1998).CrossRefGoogle Scholar
  30. 30.
    I. Kolmanovsky, M. Druzhinina, and J. Sun, “Nonlinear Torque and Air-to-Fuel Ratio Controller for Direct Injection Stratified Charge Engines”, in Proceedings of 5th Internatinal Symposium on Advanced Vehicle Control, Ann Arbor MI, USA, 2000.Google Scholar
  31. 31.
    A. G. Stefanapoulou, J. W. Grizzle, and J. S. Freudenberg, “Engine Air-Fuel Ratio and Torque Control Using Secondary Throttles”, in Proceedings of Conference on Decision Control, Orlando FL, USA, 1994, 2748–2753.Google Scholar
  32. 32.
    S. Ginoux and J. Champoussin, “Engine Torque Determination by Crankangle Measurements: State of the Art, Future Prospects,” SAE Technical Report, No. 970532 (1997).Google Scholar
  33. 33.
    I. Haskara and L. Mianzo, “Real-Time Cylinder Pressure and Indicated Torque Estimation via Second Order Sliding Mode,” in Proceedings of American Control Conference, USA, 2001, pp. 3324–3328.Google Scholar
  34. 34.
    S. Park and M. Sunwoo, “Torque Estimation of Spark Ignition Engines via Cylinder Pressure Measurement,” J. Automob. Eng. 217(9), 809–817 (2003).Google Scholar
  35. 35.
    Y. Nishimura and K. Ishii, “Engine Idle Stability Analysis and Control”, SAE Paper no. 860415 (1986).Google Scholar
  36. 36.
    M. Abate and V. Di Nunzio, “Idle Speed Control Using Optimal Regulations”, SAE Technical Report no. 905008 (1990).Google Scholar
  37. 37.
    C. E. Baumgartner, H. P. Geering, C. H. Onder, et al., “Robust Multivariable Idle Speed Control”, in Proceedings of American Control Conference, Seattle, WA, USA, 1986.Google Scholar
  38. 38.
    L. Glielmo, S. Santini, and G. Serra, “Optimal Idle Speed Control with Induction-to-Power Finite Delay for SI Engines”, in Proceedings of 7th Mediterranean Conference on Control and Automation, Haifa, Israel, 1999, pp. 200–209.Google Scholar
  39. 39.
    D. Hrovat and J. Sun, “Models and Control Methodologies for IC Engine Idle Speed Control Design”, Contr. Engineer. Pract., 5(8), (1997).Google Scholar
  40. 40.
    D. Hrovat and B. Bodenheimer, “Robust Automotive Idle Speed Control Design Based on μ-Synthesis”, in Proceedings of IEEE American Control Conference, S. Francisco, CA, USA, 1993, pp. 1778–1783.Google Scholar
  41. 41.
    L. Kjergaard, S. Nielsen, T. Vesterholm, et al., “Advanced Nonlinear Engine Idle Speed Control Systems”, SAE Technical Report no. 940974 (1994).Google Scholar
  42. 42.
    A. P. Petridis and A. T. Shenton, “Inverse-NARMA: a Robust Control Method Applied to SI Engine Idle-Speed Regulation”, Contr. Engineer. Pract., 11(3), 279–290 (2003).CrossRefGoogle Scholar
  43. 43.
    D. Shim, J. Park, P. P. Khargonekar, et al., “Reducing Automotive Speed Fluctuation at Idle”, IEEE Trans. Control Syst. Technol., 4, 404–410 (1996).CrossRefGoogle Scholar
  44. 44.
    B. A. Ault, V. K. Jones, J. D. Powell, et al., “Adaptive Air-Fuel Ratio Control of a Spark Ignition Engine,” SAE paper, No. 940373 (1993).Google Scholar
  45. 45.
    Y. Luan and N. A. Henein, “A Simulation Model for Gasoline Engine Cold Start Fuel Calibration”, SAE Paper no. 2002-01-2801 (2002).Google Scholar
  46. 46.
    S. R. Fozo and C. F. Aquino, “Transient A/F Characteristics for Cold Operation of 1.6 Liter Engine with Sequential Fuel Injection”, SAE Paper no. 880691 (1988).Google Scholar
  47. 47.
    M. Ueno, “A Quick Warm-Up System during Engine Start-up Period Using Adaptive Control of Intake Air and Ignition Timing”, SAE Paper no. 2000-01-0551 (2000).Google Scholar
  48. 48.
    S. Liu, T. R. Bewley, “Adjoint-Based System Identification and Feedforward Control Optimization in Automotive Powertrain Subsystems”, in Proceedings of American Control Conference. Denver CO, USA, 2003, pp. 2566–2571.Google Scholar
  49. 49.
    S. Jiang, M. Smith, and J. Kitchen, “Optimization of PID Control for Engine Electronic Throttle System Using Iterative Feedback Tuning”, in Proceedings of SAE World Congress and Exhibition, Detroit MI, USA, 2009.Google Scholar
  50. 50.
    J. Li, J. Feng, and Y. Fan, “An Investigation to Controller Design for Active Vehicle Suspension by Using Ga-Based PID and Fuzzy Logic”, in Proceedings of SAE World Congress and Exhibition, Detroit MI, 2002.Google Scholar
  51. 51.
    A. I. Cohen, K. W. Randall, C. D. Tether, et al., “Optimal Control of Cold Automobile Engines”, SAE Paper no. 840544 (1984).Google Scholar
  52. 52.
    S. A. Freia, L. Guzzellaa, C. H. Ondera, et al., “Improved Dynamic Performance of Turbocharged SI Engine Power Trains Using Clutch Actuation”, Contr. Engineer. Pract., 14, 363–373 (2006).CrossRefGoogle Scholar
  53. 53.
    M. Brandstetter, “Robust Air-Fuel Ratio Control for Combustion Engines”, PhD Thesis (Cambridge UK, 1996).Google Scholar
  54. 54.
    A. P. Petridis and A. T. Shenton, “Linear Robust Control of Identified Nonlinear Inverse Compensated SI Engine”, J. Dyn. Syst., Meas. Contr., 125, 69–73 (2003).CrossRefGoogle Scholar
  55. 55.
    G. Bloch, F. Lauer, and G. Colin, On Learning Machines for Engine Control (Springer, Berlin, 2008).Google Scholar
  56. 56.
    J. Sun, I. Kolmanovsky, J. Dixon, et al., “Control of Direct Injection Spark Ignition Engines: Analytical and Experimental Investigations”, in Proceedings of 3rd IFAC Workshop on Advances in Automotive Control, Karlsruhe, Germany, 2003.Google Scholar
  57. 57.
    F. Q. Zhao, M. C. Lai, and D. L. Harrington, “A Review of Mixture Preparation and Combustion Control Strategies for Spark-Ignited Direct Injection Gasoline Engines”, SAE Paper no. 970627 (1997).Google Scholar
  58. 58.
    J. Abthoffm, P. Antony, M. Kramer, et al., “The Mercedez-Benz C-Class Series Hybrid”, SAE Paper no. 981123 (1998).Google Scholar
  59. 59.
    M. Hayashida and K. Narusava, “Optimization of Performance and Consumption on Series Hybrid Electric Power System”, SAE Paper no. 1999-01-0922 (1999).Google Scholar
  60. 60.
    E. D. Tate and S. P. Boyd, “Finding Ultimate Limits of Performance for Hybrid Electric Vehicles”, SAE Paper no. 2000-0103099 (2000).Google Scholar
  61. 61.
    J. T. Pukrushpan, A. G. Stefanopoulou, and H. Peng, Control of Fuel Cell Power Systems: Principles, Modeling, Analysis, and Feedback Design (Springer-Verlag, London, 2004).Google Scholar
  62. 62.
    W. C. Yang, B. Bates, N. Fletcher, et al., “Control Challenges and Methodologies in Fuel Cell Vehicle development”, SAE Paper no. 98C054 (1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • D. N. Gerasimov
    • 1
    • 2
    • 3
  • H. Javaherian
    • 1
    • 2
    • 3
  • D. V. Efimov
    • 1
    • 2
    • 3
  • V. O. Nikiforov
    • 1
    • 2
    • 3
  1. 1.Saint Petersburg State University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  2. 2.Institute of Problems of Mechanical Engineering, V.O.St. PetersburgRussia
  3. 3.General Motors Research Laboratories.WarrenUSA

Personalised recommendations