Quantum fuzzy inference for knowledge base design in robust intelligent controllers

  • L. V. Litvintseva
  • I. S. Ul’yanov
  • S. V. Ul’yanov
  • S. S. Ul’yanov
Artificial Intelligence


The analysis of simulation results obtained using soft computing technologies has allowed one to establish the following fact important for developing technologies for designing robust intelligent control systems. Designed (in the general form for random conditions) robust fuzzy controllers for dynamic control objects based on the knowledge base optimizer (stage 1 of the technology) with the use of soft computing can operate efficiently only for fixed (or weakly varying) descriptions of the external environment. This is caused by possible loss of the robustness property under a sharp change of the functioning conditions of control objects: the internal structure of control objects, control actions (reference signal), the presence of a time delay in the measurement and control channels, under variation of conditions of functioning in the external environment, and the introduction of other weakly formalized factors in the control strategy. In this paper, a description of the strategy of designing robust structures of an intelligent control system based on the technologies of quantum and soft computing is given. The developed strategy allows one to improve the robustness level of fuzzy controllers under the specified unpredicted or weakly formalized factors for the sake of forming and using new types of processes of self-organization of the robust knowledge base with the help of the methodology of quantum computing. Necessary facts from quantum computing theory, quantum algorithms, and quantum information are presented. A particular solution of a given problem is obtained by introducing a generalization of strategies in models of fuzzy inference on a finite set of fuzzy controllers designed in advance in the form of new quantum fuzzy inference. The fundamental structure of quantum fuzzy inference and its software toolkit in the processes of designing the knowledge base of robust fuzzy controllers in on-line, as well as a system for simulating robust structures of fuzzy controllers, are described. The efficiency of applying quantum fuzzy inference is illustrated by a particular example of simulation of robust control processes by an essentially nonlinear dynamic control object with randomly varying structure.


Entangle State Fuzzy Controller Quantum Correlation System Science International Quantum Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. L. V. Litvintseva, S. S. Ulyanov, K. Takahashi, et al., ìIntelligent Robust Control Design Based on New Types of Computation, Pt. 1. New Soft Computing Technology of KB-design of Smart Control Simulation for Nonlinear Dynamic Systemsî Note del Polo (Ricerca) Universita degli Studi di Milano, 60 (Milan University, Milan, 2004).Google Scholar
  2. 2.
    S. A. Panfilov, L. V. Litvintseva, S. V. Ulyanov, et al., ìSoft Computing Optimizer for Intelligent Control Systems Design: the Structure and Applications,” J. Systemics, Cybernetics and Informatics 1(5) (2003).Google Scholar
  3. 3.
    S. V. Ulyanov and L. V. Litvintseva, “Design of Self-Organized Intelligent Control Systems Based on Quantum Fuzzy Inference: Intelligent System of Systems Engineering Approach,” in Proceedings of IEEE International Conference on Systems, Man and Cybernetics (SMC’, 2005), Hawaii, USA, 2005, pp. 3835–3840.Google Scholar
  4. 4.
    S. V. Ulyanov, L. V. Litvintseva, S. S. Ulyanov, et al., “Self-Organization Principle and Robust Wise Control Design Based on Quantum Fuzzy Inference,” in Proceedings of International Conference ICSCCW’ (2005), Antalya, Turkey, 2005.Google Scholar
  5. 5.
    L. V. Litvintseva, S. V. Ulyanov, K. Takahashi, et al., “Design of Self-Organized Robust Wise Control Systems Based on Quantum Fuzzy Inference,” in Proceedings of World Automation Congress WAC’2006: Soft Computing with Industrial Applications (ISSCIí2006), Budapest, Hungary, 2006.Google Scholar
  6. 6.
    I. Kurawaki, L. V. Litvintseva, I. S. Ul’yanov, et al., “Design of Robust Knowledge Bases of Fuzzy Controllers for Intelligent Control of Substantially Nonlinear Dynamic Systems. I. Application of Soft Computing,” Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 4, (2004) [Comp. Syst. Sci. 43 (4), 615–632 (2004)].Google Scholar
  7. 7.
    L. V. Litvintseva, S. V. Ul’yanov, and S. S. Ul’yanov, “Design of Robust Knowledge Bases of Fuzzy Controllers for Intelligent Control of Substantially Nonlinear Dynamic Systems. II. Soft Computing Optimizer and Intelligent Control Systems,” Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 5, (2006) [Comp. Syst. Sci. 45 (5), 744–771 (2006)].Google Scholar
  8. 8.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Univ. Press, UK, Cambridge, 2000).zbMATHGoogle Scholar
  9. 9.
    D. C. Marinescu and G. M. Marinescu, Approaching Quantum Computing (Prentice Hall, 2005).Google Scholar
  10. 10.
    S. V. Ulyanov, L. V. Litvintseva, I. S. Ulyanov, et al., Quantum Information and Quantum Computational Intelligence: Backgrounds and Applied Toolkit of Information Design Technologies, Milan: Note del Polo (Ricerca), Universita degli Studi di Milano 78–86 (2005).Google Scholar
  11. 11.
    M. L. Chiara Dalla, R. Guintini, and R. Greechie, et al., Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logic, (Kluwer, Amsterdam, 2004).zbMATHGoogle Scholar
  12. 12.
    A. K. Pati, “General Impossible Operations in Quantum Information,” Phys. Review A66(6) (2002).Google Scholar
  13. 13.
    D. Zhou, B. Zeng, and L. You, “Quantum Information Cannot Be Split into Complementary Parts,” Physics Letters A352(1/2) (2006).Google Scholar
  14. 14.
    E. Kashefi, A. Kent, V. Vedral, et al., “Comparison of Quantum Oracles,” Phys. Review A65(5) (2002).Google Scholar
  15. 15.
    A. J. Bessen, “The Power of Various Real-Valued Quantum Queries,” J. of Complexity 20(5) (2004).Google Scholar
  16. 16.
    A. Atici, Comparative Computational Strength of Quantum Oracles arXiv: quant-ph/0312107v1,.2003.Google Scholar
  17. 17.
    H. Azuma, A Quantum Algorithm for Examining Oracles arXiv: quant-ph/0408013v1.2004.Google Scholar
  18. 18.
    K. Iwama, A. Kawachi, R. Raymond, et al., l. Robust quantum algorithms for oracle identification arXiv: quant-ph/0411204v1.2004.Google Scholar
  19. 19.
    A. Wojcik and R. W. Chhajlany, Quantum-Classical Correspondence in the Oracle Model of Computation arXiv: quant-ph/0506248v1.2005.Google Scholar
  20. 20.
    I. V. Bargatin, B. A. Grishanin, and V. N. Zadkov, “Entangled Quantum States of Atomic Systems,” Usp. Fiz. Nauk 171(6) (2001).Google Scholar
  21. 21.
    R. Jozsa and N. Linden, “On the Role of Entanglement in Quantum Computational Speed-Up,” in Proceedings R. Soc. Lond. 459(2036) (2003).Google Scholar
  22. 22.
    G. Vidal, “Efficient Classical Simulation of Slightly Entangled Quantum Computation,” Phys. Rev. Lett. 91(14) (2003).Google Scholar
  23. 23.
    S. V. Ulyanov, “System and Method for Control Using Quantum Soft Computing,” US patent, No. 6, 578,018.Google Scholar
  24. 24.
    D. N. Klyshko, “Basic Concepts of Quantum Physics from the Operational Point of View,” Usp. Fiz. Nauk 168(9) (1998).Google Scholar
  25. 25.
    A. Khrennikov, “Representation of the Kolmogorov Model Having All Distinguishing Features of Quantum Probabilistic Model,” Phys. Lett. A316(3) (2003).Google Scholar
  26. 26.
    F. Ghisi and S. V. Ulyanov, “The Information Role of Entanglement and Interference in Shor Quantum Algorithm Gate Dynamics,” J. Modern Optics 47(12) (2000).Google Scholar
  27. 27.
    P. Selinger, “Towards a Quantum Programming Language,” Math. Structures Comp. Sci. 14(4) (2004).Google Scholar
  28. 28.
    O. Brunet and Ph. Jorrand, “Dynamic Quantum Logic for Quantum Programs,” Internat. J. Quantum Information 2(1), 45–54 (2005).CrossRefGoogle Scholar
  29. 29.
    T. Altenkirch and J. Grattage, An Algebra of Pure Quantum Programming arXiv: quant-ph/0506012v1.2005.Google Scholar
  30. 30.
    Y. Feng, R. Duan, Z. Ji, et al., Semantics of Purely Quantum Programming Language arXiv: quantph/0507043v2.2005.Google Scholar
  31. 31.
    W. Mauerer, Semantics and Simulation of Communication in Quantum Programming arXiv: quantph/0511145v1.2005.Google Scholar
  32. 32.
    P. Zuliani, “Compiling Quantum Programs,” Acta Informatica 41(7/8) (2005).Google Scholar
  33. 33.
    M. Lalire, Relations Among Quantum Processes: Bisimilarity and Congruence arXiv: quantph/0603274v1.2006.Google Scholar
  34. 34.
    A. Tafliovich and E. C. R. Hehner, Quantum Predictive Programming arXiv: quant-ph/0602156v1.2006.Google Scholar
  35. 35.
    S. Ya. Kilin, “Quantum Information,” Usp. Fiz. Nauk 169(5) (1999).Google Scholar
  36. 36.
    A. S. Kholevo, Introduction to Quantum Information Theory (Nauka, Moscow, 2002) [in Russian].Google Scholar
  37. 37.
    M. Keyl, “Fundamentals of Quantum Information Theory,” Physical Reports 369(5) (2002).Google Scholar
  38. 38.
    N. J. Cerf and C. Adami, “Negative Entropy and Information in Quantum Mechanics,” Phys. Rev. Lett. 79(26) (1997).Google Scholar
  39. 39.
    M. Horodecki, J. Oppenheim, and A. Winter, “Partial Quantum Information,” Nature 436(7051) (2005).Google Scholar
  40. 40.
    L. Henderson and V. Vedral, “Classical, Quantum and Total Correlation,” J. Phys. A: Math. Gen. 34(35) (2001).Google Scholar
  41. 41.
    B. C. Sanctuary, Correlations in Entangled States arXiv: quant-ph/0508238v1.2005.Google Scholar
  42. 42.
    S. Hamieh, R. Kobes, and H. Zaraket, “Positive-Operator-Valued Measure Optimization of Classical Correlations,” Phys. Rev. A70(5) (2004).Google Scholar
  43. 43.
    S. Hamieh, J. Qi, D. Siminovitch, et al., “L. Extraction of Classical Correlations from a Bipartite Quantum System,” Phys. Rev. A67(1) (2003).Google Scholar
  44. 44.
    B. Groisman, S. Popescu, and A. Winter, “Quantum, Classical, and Total Amount of Correlations in Quantum State,” Phys. Rev. A72(3) (2005).Google Scholar
  45. 45.
    D. P. DiVincenzo, M. Horodecki, D. W. Leung, et al., “Locking Classical Correlation in Quantum States,” Phys. Rev. Lett. 92(6) (2004).Google Scholar
  46. 46.
    M. Horodecki, P. Horodecki, R. Horodecki, et al., “Local Versus Nonlocal Information in Quantum-Information Theory: Formalism and Phenomena,” Phys. Rev. A71(6) (2005).Google Scholar
  47. 47.
    K. Maruyama, C. Brukner, and V. Vedral, “Thermodynamical Cost of Accessing Quantum Information,” J. Phys. A: Math. Gen. 38(32) (2005).Google Scholar
  48. 48.
    M. Christandl and A. Winter, “Uncertainty, Monogamy, and Locking of Quantum Correlations,” IEEE Trans. Information Theory 51(9) (2005).Google Scholar
  49. 49.
    L. B. Levitin, “Conditional Entropy and Information in Quantum Systems,” Chaos, Solitons and Fractals 10(10) (1999).Google Scholar
  50. 50.
    H. Olivier and W. H. Zurek, “Quantum Discord: A Measure of the Quantumness of Correlations,” Phys. Rev. Lett. 88(1) (2002).Google Scholar
  51. 51.
    W. H. Zurek, “Quantum Discord and Maxwell’s Demon,” Phys. Rev. A67(1) (2003).Google Scholar
  52. 52.
    G. A. Giraldi, R. Portugal, and R. N. Thess, Genetic Algorithms and Quantum Computation arXiv: cs. NE/0403003v1.2004.Google Scholar
  53. 53.
    S. V. Ulyanov, G. G. Rizzotto, I. Kurawaki, et al., “Method and Hardware Architecture for Controlling a Process or for Processing Data Based on Quantum Soft Computing,” PCT Patent. WO, No. 01/67186.Google Scholar
  54. 54.
    B. N. Petrov, G. M. Ulanov, S. V. Ul’yanov, et al., Control Problems for Relativistic and Quantum Dynamic Systems (Nauka, Moscow, 1982) [in Russian].Google Scholar
  55. 55.
    I. I. Gol’denblat and S. V. Ul’yanov, Introduction to the Theory of Relativity and Its Applications to Technological Innovation (Fizmatgiz, Moscow, 1979) [in Russian].Google Scholar
  56. 56.
    S. V. Ulyanov, I. Kurawaki, S. A. Panfilov, et al., “L. Information Analysis of Quantum Gates for Simulation of Quantum Algorithms on Classical Computers,” in Proceedings of International Conference on Quantum Communication, Measurements and Computing QCM&C’2000, Capri, Italy, 2000.Google Scholar
  57. 57.
    W. H. Zurek, “Probabilities from Entanglement,î Born’s Rule p k = |Ψk|2from Invariance,” Phys. Rev. A71(5) (2005).Google Scholar
  58. 58.
    S. V. Ulyanov, L. V. Litvintseva, S. S. Ulyanov, et al., “L. Computational Intelligence with Quantum Game’s Approach and Robust Decision-Making in Communication Information Uncertainty,” in Proceedings of International Conference on Computational Intelligence ICCI’2004, Nicosis, North Cypress, 2004, pp. 172–187.Google Scholar
  59. 59.
    S. V. Ulyanov, K. Takahashi, L. V. Litvintseva, et al., “Quantum Soft Computing Via Robust Control: Classical Efficient Simulation of Wise Quantum Control in Non-Linear Dynamic Systems Based on Quantum Game Gates,” in Proceedings of 2nd International Conference on Soft Computing and Computing with Words in System Analysis, Decision, and Control ICSCWí2003, Antalya, Turkey, 2003, pp. 11–41.Google Scholar
  60. 60.
    S. V. Ulyanov, G. Degli Antoni, K. Yamafuji, et al., “Physical Limits and Information Bounds of Micro-Control. Pt. 2: Quantum Soft Computing and Quantum Search Algorithms,” in Proceedings of International Symposium on Micro-Machine and Human Science MHS’98, Nagoya, Japan, 1998, pp. 217–224.Google Scholar
  61. 61.
    S. V. Ulyanov, I. Kurawaki, L. V. Litvintseva, et al., “Applied Quantum Soft Computing for Optimization of KB Structures in Fuzzy Controllers: Introduction,” in Proceedings of World Congress on Intelligent Systems on Industrial Automation WCIS’, Tashkent, Uzbekistan, 2000, pp. 34–37.Google Scholar
  62. 62.
    S. V. Ulyanov, L. V. Litvintseva, I. Kurawaki, et al., “Applied Quantum Soft Computing for Global Optimization and Robust Control Design: Methodological Approach,” in Proceedings of 4th International Conference on Applications of Fuzzy Systems and Soft Computing ICAFSí2000, Siegen, Germany, 2000, 190–213.Google Scholar
  63. 63.
    S. V. Ulyanov and K. Takahashi, “I. Kurawaki et al., ìQuantum Soft Computing: Quantum Global Optimization and Quantum Learning Processes-Application in AI, Informatics and Intelligent Control Processes,” in Proceedings of 7th World Multi-Conference on Systemics, Cybernetics and Informatics SCIí2003), Orlando, USA, 2003, Vol. 7, pp. 422–427.Google Scholar
  64. 64.
    S. V. Ulyanov, “Quantum Soft Computing in Control Process Design: Quantum Genetic Algorithms and Quantum Neural Network Approaches,” in Proceedings of World Automation Congress WAC’2004: Soft Computing with Industrial Applications ISSCIí2004, Seville, Spain, 2004, Vol. 17, pp. 99–104.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • L. V. Litvintseva
    • 1
  • I. S. Ul’yanov
    • 1
  • S. V. Ul’yanov
    • 1
  • S. S. Ul’yanov
    • 1
  1. 1.OOO MCG QUANTUMMoscowRussia

Personalised recommendations