Method of reduction and qualitative analysis of dynamic systems: I

  • S. N. Vassilyev
Control in Deterministic Systems


A reduction method, which is a further development of known algorithms of the comparison method, is proposed as a logical tool for generation of hypotheses. Some examples of application of the method in the qualitative analysis of dynamic systems are given for obtaining some criteria of the attainability of sets.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Wang, “Towards Mechanical Mathematics,” IBM J. Res. Develop. 4(1) (1960).Google Scholar
  2. 2.
    V. M. Glushkov, Machine Proves (Znanie, Moscow, 1981) [in Russian].Google Scholar
  3. 3.
    G. V. Davydov, “On Correction of Unprovable Formulas,” Zap. Nauchn. Sem. LOMI AN SSSR 4 (1967).Google Scholar
  4. 4.
    V. M. Matrosov, “Comparison Method in Dynamics of Systems, I, II,” Differ. Uravn. Ikh Primen. 10(9) (1974); 11 (3) (1975).Google Scholar
  5. 5.
    T. Waževski, “Systemes des Équations et des Inéqualites Différentielles Ordinaires aux Deuxiémes Membres Monotones et Leurs Applications,” Ann. Soc. Polon. Math 23 (1950).Google Scholar
  6. 6.
    A. A. Markov, “Sur une Proprieté Génerale des Ensembles Minimaux de M. Birkhoff.” C. r. Acad. Sci. (1931).Google Scholar
  7. 7.
    V. I. Zubov, Motion Stability (Vysshaya Shkola, Moscow, 1973) [in Russian].Google Scholar
  8. 8.
    D. M. Klimov, V. V. Leonov, and V. M. Rudenko, Methods of Analytical Computations on Computers in Nonlinear Problems of Mechanics (Nauka, Moscow, 1989) [in Russian].Google Scholar
  9. 9.
    S. N. Vassilyev, “Comparison Method in Analysis of Systems, I–IV,” Differ. Uravn. Ikh Primen. 17(9) (1981); 17 (11) (1981); 18 (2) (1982); 18 (6) (1982).Google Scholar
  10. 10.
    S. N. Vassilyev, A. K. Zherlov, E. A. Fedosov, et al., Intelligent Control of Dynamic Systems (FIZMATLIT, Moscow, 2000) [in Russian].Google Scholar
  11. 11.
    V. M. Matrosov, L. Yu. Anapol’skii, and S. N. Vassilyev, Comparison Method in Mathematical Theory of Systems (Nauka, Novosibirsk, 1980) [in Russian].Google Scholar
  12. 12.
    V. M. Matrosov, S. N. Vassilyev, R. I. Kozlov, et al., Algorithms for Deriving Theorems of the Method of Vector Lyapunov Functions (Nauka, Novosibirsk, 1981) [in Russian].Google Scholar
  13. 13.
    N. Bourbaki, Théorie des Ensembles (Paris, 1958; Mir, Moscow, 1965).Google Scholar
  14. 14.
    A. I. Mal’tsev, Algebraic Systems (Nauka, Moscow) [in Russian].Google Scholar
  15. 15.
    L. Yu. Anapol’skii and V. M. Matrosov, “Comparison Method in Analysis of Perturbed Processes,” in Abstracts of Internat. Symposium IFAK on Problems of Organizational Control and Hierarchical Systems (Baku, 1971) Part 1 (Moscow, 1972) [in Russian].Google Scholar
  16. 16.
    V. V. Nemytskii, “General Dynamic Systems,” Dokl. Akad. Nauk SSSR 53(6) (1946).Google Scholar
  17. 17.
    K. S. Sibirskii, Introduction to Topological Dynamics (RIO AN MSSR, Chisinau, 1970) [in Russian].Google Scholar
  18. 18.
    S. N. Vassilyev, P. K. Kuznetsov, and A. V. Lakeev, “On the General Theory of Integro-Operator Equation of Dynamics of Switching Schemes,” Dokl. Akad. Nauk 342(4) (1996).Google Scholar
  19. 19.
    S. N. Vassilyev, P. K. Kuznetsov, and A. V. Lakeev, “Analysis of Processes in Digital Circuits,” in Nonlinear Control Theory, Ed. by Matrosov V. M., Vassilyev S. N., and Moskalenko A. I. (FIZMATLIT, Moscow, 2002) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc 2006

Authors and Affiliations

  • S. N. Vassilyev
    • 1
  1. 1.Institute of System Dynamics and Control Theory, Siberian DivisionRussian Academy of SciencesIrkutskRussia

Personalised recommendations