Eurasian Soil Science

, Volume 52, Issue 12, pp 1533–1541 | Cite as

Positive Uranium Anomalies in the Peatlands of Humid Zone: A Review

  • Yu. N. VodyanitskiiEmail author
  • N. A. Grebenkin
  • D. V. Manakhov
  • A. V. Sashchenko
  • V. M. Tiuleneva


In recent years, geologists have found peatlands extremely rich in uranium. They can be considered an example of the efficient operation of natural organic geochemical barriers in the humid zone. They also open up the possibility of determining the age of these peatlands by t he isotopic 230Th/234U method. The deposition of uranium in peat is due to the U(VI) bioreduction controlled by several geochemical factors: the composition of organic matter and soil solution, the redox potential, and the capacity of uranyl ions to make complexes with organic ligands. By the nature of uranium enrichment, peatlands can be subdivided into two groups: (a) peatlands enriched in uranium carried by soil and groundwater from peripheric sources and (b) peatlands enriched in uranium from underlying uraniferous rocks. The data on geography, genesis, and physicochemical conditions of positive uranium anomalies in peatlands of the humid zone are collected and analyzed in this review.


biogeochemistry of uranium positive uranium anomalies reduction of uranium U and Th isotopes the age of peat 



  1. 1.
    Yu. N. Vodyanitskii, “Chemical aspects of uranium behavior in soils: a review,” Eurasian Soil Sci. 44, 862–873 (2011). CrossRefGoogle Scholar
  2. 2.
    Yu. N. Vodyanitskii, N. V. Kosareva, and A. T. Savichev, “The content of lanthanides (Y, La, Ce, Pr, Nd, Sm) and actinides (Th, U) in soils of the Khibiny-Lovozerskaya province,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 65, 75–86 (2010).Google Scholar
  3. 3.
    Hydrogenic Deposits of Uranium, Ed. by A. I. Perel’man (Moscow, 1980) [in Russian].Google Scholar
  4. 4.
    N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Elsevier, Amsterdam, 1997; Binom, Moscow, 2008).Google Scholar
  5. 5.
    O. A. Doinikova, Doctoral Dissertation in Geology-Mineralogy (Moscow, 2005).Google Scholar
  6. 6.
    T. T. Efremova, S. P. Efremov, K. P. Kutsenogii, A. A. Onuchin, and V. F. Peresedov, “Biogeochemistry of Fe, Mn, Cr, Ni, Co, Ti, V, Mo, Ta, W, and U in a low moor peat deposit of the Ob’-Tom’ interfluve,” Eurasian Soil Sci. 36, 501–510 (2003).Google Scholar
  7. 7.
    V. V. Ivanov, Ecological Geochemistry of the Elements. Rare f-Elements (Ekologiya, Moscow, 1997), Book 6.Google Scholar
  8. 8.
    L. I. Inisheva, M. V. Shurova, G. V. LArina, L. L. Shagaeva, O. A. Golubina, and E. E. Ezupenok, “Ecological monitoring of mires of Western Siberia and Altai Mountains,” in Proceedings of the III International Scientific Conference “Modern Problems of Soil Pollution” (Moscow, 2010), pp. 354–358.Google Scholar
  9. 9.
    F. I. Kozlovskii, “Forms of anaerobic processes in peat mires of Central Baraba,” in Theory and Study Methods of Soil Cover (GEOS, Moscow, 2003), pp. 299–314.Google Scholar
  10. 10.
    A. O. Makeev, “Soils in the geological history of the Earth,” in Evolution of Soils and Soil Cover (GEOS, Moscow, 2015), pp. 253–320.Google Scholar
  11. 11.
    F. E. Maksimov, S. A. Laukhin, Kh. A. Arslanov, V. Yu. Kuznetsov, G. N. Shilova, S. B. Chernov, I. E. Zherebtsov, and S. B. Levchenko, “The first uranium–thorium dating of the Middle Neopleistocene peat in West Siberia,” Dokl. Earth Sci. 433, 915–919 (2010). CrossRefGoogle Scholar
  12. 12.
    Yu. B. Mironov, G. B. Lebedeva, and A. A. Pugovkin, “Surface uranium deposits in humid climates of the Earth,” Reg. Geol. Metellog., No. 63, 68–76 (2015).Google Scholar
  13. 13.
    A. I. Perel’man and N. S. Kasimov, Geochemistry of Landscape (Astreya-2000, Moscow, 1999) [in Russian].Google Scholar
  14. 14.
    A. V. Puzanov, O. A. El’chinova, and T. D. Rozhdestvenskaya, “Radionuclides in soils of Northern and Central Altai,” in Geochemistry of the Biosphere (Moscow, 2006), pp. 299–301.Google Scholar
  15. 15.
    H. E. Hawkes and J. S. Webb, Geochemistry in Mineral Exploration (Harper and Row, New York, 1962; Mir, Moscow, 1964).Google Scholar
  16. 16.
    T. Behrends and P. van Cappellen, “Competition between enzymatic and abiotic reduction of uranium(VI) under iron reducing conditions,” Chem. Geol. 220, 315–327 (2005). CrossRefGoogle Scholar
  17. 17.
    K. M. Belli, T. J. DiChristina, P. van Cappellen, and M. Taillefert, “Effects of aqueous uranyl speciation on the kinetics of microbial uranium reduction,” Geochim. Cosmochim. Acta 157, 109–124 (2015). CrossRefGoogle Scholar
  18. 18.
    R. Bernier-Latmani, H. Veeramani, E. D. Vecchia, P. Junier, J. S. Lezama-Pacheco, E. I. Suvorova, J. O. Sharp, N. S. Wigginton, and J. R. Bargar, “Non-uraninite products of microbial U(VI) reduction,” Environ. Sci. Technol. 44 (24), 9456–9462 (2010). CrossRefGoogle Scholar
  19. 19.
    S. C. Brooks, J. K. Fredrickson, S. L. Carroll, D. W. Kennedy, J. M. Zachara, A. E. Plymale, S. D. Kelly, K. M. Kemner, and S. Fendorf, “Inhibition of bacterial U(VI) reduction by calcium,” Environ. Sci. Technol. 37 (9), 1850–1858 (2003). CrossRefGoogle Scholar
  20. 20.
    W. D. Burgos, J. T. McDonough, J. M. Senko, G. X. Zhang, A. C. Dohnalkova, S. D. Kelly, Y. Gorby, and K. M. Kemner, “Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1,” Geochim. Cosmochim. Acta 72 (20), 4901–4915 (2008). CrossRefGoogle Scholar
  21. 21.
    W. D. Burgos, J. M. Senko, B. A. Dempsey, E. E. Rodrn, J. J. Stone, K. M. Kemner, and S. D. Kelly, “Soil humic acid decreases biological uranium(VI) reduction by Shewanella putrefaciens CN32,” Environ. Eng. Sci. 24 (6), 755–761 (2007). CrossRefGoogle Scholar
  22. 22.
    D. A. Carvajal, Y. P. Katsenovich, and L. E. Lagos, “The effects of aqueous bicarbonate and calcium ions on uranium biosorption by Arthrobacter G975 strain,” Chem. Geol. 330–331, 51–59 (2012). CrossRefGoogle Scholar
  23. 23.
    H. Cheng, R. L. Edwards, J. Hoff, C. D. Gallup, D. A. Richards, and Y. Asmero, “The half-lives of uranium-234 and thorium-230,” Chem. Geol. 169 (1–2), 17–33 (2000). CrossRefGoogle Scholar
  24. 24.
    K. E. Fletcher, M. I. Boyanov, S. H. Thomas, Q. Wu, K. M. Kemner, and F. E. Loffler, “U(VI) reduction to mononuclear U(VI) by Desulfitobacterium species,” Environ. Sci. Technol. 44 (12), 4705–4709 (2010). CrossRefGoogle Scholar
  25. 25.
    C. Fortin, L. Dutel, and J. Garnier-Laplace, “Uranium complexation and uptake by a green alga in relation to chemical speciation: the importance of the free uranyl ion,” Environ. Toxicol. Chem. 23 (4), 974–981 (2004). CrossRefGoogle Scholar
  26. 26.
    A. J. Francis and C. J. Dodge, “Bioreduction of uranium(VI) complexed with citric acid by clostridia affects its structure and solubility,” Environ. Sci. Technol. 42 (22), 8277–8282 (2008). CrossRefGoogle Scholar
  27. 27.
    M. Frechen, V. Sierralta, D. Oezen, and B. Urban, “Uranium-series dating of peat from central and Northern Europe,” Dev. Quat. Sci. 7, 93–117 (2007). CrossRefGoogle Scholar
  28. 28.
    J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, C. X. Liu, M. C. Duff, D. B. Hunter, and A. Dohnalkova, “Influence of Mn oxides on the reduction of uranium(VI) by the metal-reducing bacterium Shewanella putrefaciens,” Geochim. Cosmochim. Acta 66 (18), 3247–3262 (2002).CrossRefGoogle Scholar
  29. 29.
    B. Gu and J. Chen, “Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions,” Geochim. Cosmochim. Acta 67 (19), 3575–3582 (2003). CrossRefGoogle Scholar
  30. 30.
    B. Gu, H. Yan, P. Zhou, D. B. Watson, M. Papk, and J. Istok, “Natural humics impact uranium bioreduction and oxidation,” Environ. Sci. Technol. 39 (14), 5268–5275 (2005). CrossRefGoogle Scholar
  31. 31.
    H. Heijnis and J. van der Plicht, “Uranium/thorium dating of Late Pleistocene peat deposits in NW Europe, uranium/thorium isotope systematics and open-system behavior of peat layers,” Chem. Geol. 94 (3), 161–171 (1992). CrossRefGoogle Scholar
  32. 32.
    J. Higgo, D. Kinnibugh, B. Smith, and E. Tipping, “Complexation of Co2+, Ni2+, UO2+ and Ca2+ by humic substances in ground waters,” Radiochim. Acta 61 (2), 91–104 (1993). CrossRefGoogle Scholar
  33. 33.
    E. F. Idiz, D. Carlisle, and I. R. Kaplan, “Interaction between organic matter and trace metals in a uranium rich bog, Kern County, California, USA,” Appl. Geochem. 1 (5), 573–590 (1986). CrossRefGoogle Scholar
  34. 34.
    A. Kabata-Pendias, Trace Elements in Soils and Plants (CRC Press, Boca Raton, FL, 2011).Google Scholar
  35. 35.
    A. Konopka, A. E. Plymale, D. A. Carvajal, X. J. Lin, and J. P. McKinley, “Environmental controls on the activity of aquifer microbial communities in the 300 area of the Hanford Site,” Microb. Ecol. 66 (4), 889–896 (2013). CrossRefGoogle Scholar
  36. 36.
    W. C. Li, D. M. Victor, and L. Chakrabarti, “Effect of pH and uranium concentration on interaction of uranium(VI) and uranium(IV) with organic ligands in aqueous solutions,” Anal. Chem. 52 (3), 520–523 (1980). CrossRefGoogle Scholar
  37. 37.
    S. J. Markich, P. L. Brown, and R. A. Jeffree, “The use of geochemical speciation modelling to predict the impact of uranium to freshwater biota,” Radiochim. Acta 74 (1), 321–326 (1996). CrossRefGoogle Scholar
  38. 38.
    V. Moulin, J. Tits, and G. Quaounian, “Actinide speciation in the presence of humic substances in natural water conditions,” Radiochim. Acta 58–59 (1), 179–190 (1992). CrossRefGoogle Scholar
  39. 39.
    R. Osterberg and L. Shirshova, “Oscillating, nonequilibrium redox properties of humic acids,” Geochim. Cosmochim. Acta 61 (21), 4599–4604 (1997). CrossRefGoogle Scholar
  40. 40.
    J. K. Otton, “Surficial uranium deposits in the United States of America,” in Surficial Uranium Deposits (International Atomic Energy Agency, Vienna, 1984), No. IAEA-TECDOC-322.Google Scholar
  41. 41.
    J. K. Otton, “Surficial uranium deposits: summary and conclusions,” in Surficial Uranium Deposits (International Atomic Energy Agency, Vienna, 1984), No. IAEA-TECDOC-322.Google Scholar
  42. 42.
    R. A. Sanford, Q. Wu, Y. Sung, S. H. Thomas, B. K. Amos, E. K. Prince, and F. E. Loffler, “Hexavalent uranium supports growth of Anaeromyxobacter dehalogenans and Geobacter spp. with lower than predicted biomass yields,” Environ. Microbiol. 9 (11), 2885–2893 (2007). CrossRefGoogle Scholar
  43. 43.
    R. K. Sani, B. M. Peyton, and A. Dohnalkova, “Toxic effects of uranium on Desulfovibrio desulfuricans G20,” Environ. Toxicol. Chem. 25 (5), 1231–1238 (2006). CrossRefGoogle Scholar
  44. 44.
    A. van der Wijk, F. El-Daoushy, A. R. Arends, and W. G. Mook, “Dating peat with U/Th disequilibrium: some geochemical considerations,” Chem. Geol. 59, 283–292 (1986). CrossRefGoogle Scholar
  45. 45.
    J. C. Vogel and J. Kronfeld, “A new method for dating peat,” South Afr. J. Sci. 76 (12), 557–558 (1980).Google Scholar
  46. 46.
    D. Waas, A. Kleinmann, and J. Lepper, “Uranium-series dating of fen peat horizons from pit Nachtigall in northern Germany,” Quart. Int. 241 (1–2), 111–124 (2011). CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. N. Vodyanitskii
    • 1
    Email author
  • N. A. Grebenkin
    • 2
  • D. V. Manakhov
    • 1
  • A. V. Sashchenko
    • 2
  • V. M. Tiuleneva
    • 2
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Fedorovsky All-Russia Research Institute of Mineral ResourcesMoscowRussia

Personalised recommendations