Advertisement

Eurasian Soil Science

, Volume 52, Issue 12, pp 1622–1631 | Cite as

Background Variation and Threshold Values for Cadmium Concentration in Terra Rossa Soil from Dalmatia, Croatia

  • B. Miloš
  • A. BensaEmail author
DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • 20 Downloads

Abstract

The objectives of this study were to (i) establish the background variation and determine a threshold values for aqua regia soluble cadmium (Cd) in Terra Rossa soil at the local scale (Dalmatia, Croatia), (ii) check for possible soil Cd enrichment comparing its concentration at two different depths, and (iii) compare the threshold values for Cd calculated applying different statistical techniques with soil guideline values (SGV) as defined in Croatia and other national systems in Europe. The four statistical methods (the mean ± 2 standard deviations [mean ± 2SD], the median ± 2 median absolute deviations [median ± 2MAD], the (upper) Tukey inner fence (TIF), and the percentile-based approach) were used to establish the threshold values for Cd and identify samples with high Cd concentrations deviating from the background variation in a studied dataset. Overall, 74 samples from the A horizon of Terra Rossa soil were analyzed for aqua regia soluble Cd concentration (CdA); major soil properties—pH, CaCO3, soil organic carbon (SOC) content, P2O5, K2O, and particle-size distribution—were also determined in these samples. The underlying cambic B horizon was analyzed only for Cd concentration (CdB) The median CdA and CdB values of 1.84 and 1.70 mg kg–1, respectively as well as the maximum value of 8.53 mg kg–1 in the A horizon and 7.56 mg kg–1 in the B horizon obtained in this study attested to anomalously high Cd concentrations. The median CdA/CdB ratio was close to unity (1.07) indicating very low Cd enrichment in the A horizon. The [median ± 2MAD] method achieved the lowest threshold Cd value of 4.68 mg kg–1 and, consequently, a maximum number of outliers; it was followed by the classical [mean ± 2SD] method (5.01 mg kg–1), the Q95th percentile (5.29 mg kg–1), the Q98th percentile (5.64 mg kg–1), and the TIF method with the highest threshold value of 6.93 mg kg–1. All specified threshold values for Cd concentration repeatedly exceeded the maximum admissible concentrations (MACv) for agricultural land as defined in soil guideline values developed in Croatia and in several countries of the European Union. These findings indicate that more attention should be paid to the unusually high Cd concentrations in Terra Rossa soils originating from the natural sources; a more detailed geochemical survey of these soils should be performed in the future.

Keywords:

background concentration local threshold values soil guideline values 

REFERENCES

  1. 1.
    B. J. Alloway, “Cadmium” in Heavy Metals in Soils, Ed. by B. J. Alloway (Blackie Academic and Professional, London, 1995), pp. 122–147.CrossRefGoogle Scholar
  2. 2.
    D. Baize and T. Sterckeman, “Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements,” Sci. Total Environ. 264 (1–2), 127–139 (2001).  https://doi.org/10.1016/S0048-9697(00)00615-X CrossRefGoogle Scholar
  3. 3.
    A. Bellanca, S. Hauser, R. Neri, and B. Palumbo, “Mineralogy and geochemistry of Terra Rossa soils, western Sicily: insights into heavy metal fractionation and mobility,” Sci. Total Environ. 193 (1), 57–67 (1996).  https://doi.org/10.1016/S0048-9697(96)05336-3 CrossRefGoogle Scholar
  4. 4.
    C. Bini, G. Sartori, M. Whasha, and S. Fontana, “Background levels of trace elements and soil geochemistry at regional level in NE Italy,” J. Geochem. Explor. 109 (1–3), 125-133 (2011). http://dx.doi.org/10.1016%2Fj.gexplo.2010.07.008.CrossRefGoogle Scholar
  5. 5.
    M. Birke, C. Reimann, K. Oorts, U. Rauch, A. Demetriades, E. Dinelli, A. Ladenberger, J. Halamić, M. Gosar, F. Jähne-Klingberg, et al., “Use of GEMAS data for risk assessment of cadmium in European agricultural and grazing land soil under the REACH regulation,” Appl. Geochem. 74, 109–121 (2016).  https://doi.org/10.1016/j.apgeochem.2016.08.014 CrossRefGoogle Scholar
  6. 6.
    P. Blaser, S. Zimmermann, J. Luster, and W. Shotyk, “Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils,” Sci. Total Environ. 249 (1–3), 257–280 (2000).  https://doi.org/10.1016/S0048-9697(99)00522-7 CrossRefGoogle Scholar
  7. 7.
    C. Carlon, M. D’Alessandro, and F. Swartjes, Derivation Methods of Soil Screening Values in Europe: A Review and Evaluation of National Procedures towards Harmonization (European Commission, Joint Research Centre, Ispra, 2007), No. EUR 22805- En.Google Scholar
  8. 8.
    D. R. Cohen, N. F. Rutherford, E. Morisseau, and A. M. Zissimos, “Geochemical patterns in the soils of Cyprus,” Sci. Total Environ. 420, 250–262 (2012).  https://doi.org/10.1016/j.scitotenv.2012.01.036 CrossRefGoogle Scholar
  9. 9.
    W. de Vos, V. Gregorauskiene, K. Marsina, R. Salminen, I. Salpeteur, T. Tarvainen, P. J. O’Connor, A. Demetriades, S. Pirc, M. J. Batista, M. Bidovec, A. Bel-lan, M. Birke, N. Breward, B. De Vivo, et al., “Distribution of elements in subsoil and topsoil,” in Geochemical Atlas of Europe, Part 2: Interpretation of Geochemical Maps, Additional Tables, Figures, Maps, and Related Publications, Ed. by W. De Vos and T. Tarvainen (Geological Survey of Finland, Espoo, 2006), pp. 21–29.Google Scholar
  10. 10.
    T. T. Dung, V. Cappuyns, R. Swennen, and N. K. Phung, “From geochemical background determination to pollution assessment of heavy metals in sediments and soils,” Rev. Environ. Sci. Biotechnol. 12 (4), 335–353 (2013).  https://doi.org/10.1007/s11157-013-9315-1 CrossRefGoogle Scholar
  11. 11.
    H. Egnér, H. Riehm, and W.R. Domingo, “Untersuchungen uber die chemische Bodenanalyse als Grundlage fur die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung,” K. Lantbrukshoegsk. Ann. 26, 199–215 (1960)Google Scholar
  12. 12.
    A. Facchinelli, E. Sacchi, and L. Mallen, “Multivariate statistical and GIS-based approach to identify heavy metal sources in soils,” Environ. Pollut. 114 (3), 313–324 (2001).  https://doi.org/10.1016/S0269-7491(00)00243-8 CrossRefGoogle Scholar
  13. 13.
    E. Galán, J. C. Fernández-Caliani, I. González, P. Aparicio, and A. Romero, “Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of South-West Spain,” J. Geochem. Explor. 98 (3), 89–106 (2008).  https://doi.org/10.1016/j.gexplo.2008.01.001 CrossRefGoogle Scholar
  14. 14.
    A. Gałuszka, “A review of geochemical background concepts and an example using data from Poland,” Environ. Geol. 52 (5), 861–870 (2007).  https://doi.org/10.1007/s00254-006-0528-2 CrossRefGoogle Scholar
  15. 15.
    A. Gałuszka and Z. M. Migaszewski, “Geochemical background – an environmental perspective,” Mineralogia 42 (1), 7–17 (2011).  https://doi.org/10.2478/v10002-011-0002-y CrossRefGoogle Scholar
  16. 16.
    J. Halamić and S. Miko, Geochemical Atlas of the Republic of Croatia, Ed. by J. Halamić and S. Miko (Croatian Geological Survey, Zagreb, 2009).Google Scholar
  17. 17.
    V. J. G. Houba, J. Uittenbogaard, and P. Pellen, “Wageningen evaluating programmes for analytical laboratories (WEPAL), organization and purpose,” Commun. Soil Sci. Plant Anal. 27 (3–4), 421–431 (1996).  https://doi.org/10.1080/00103629609369565 CrossRefGoogle Scholar
  18. 18.
    P. J. Huber, Robust Statistics (Wiley, New York, 1981).CrossRefGoogle Scholar
  19. 19.
    ISO 10693:1995—Soil Quality, Determination of Carbonate Content, Volumetric Method (International Organization for Standardization, Geneva, 1995).Google Scholar
  20. 20.
    ISO 10390:2005—Soil Quality, Determination of pH (International Organization for Standardization, Geneva, 2005).Google Scholar
  21. 21.
    ISO 11277:2009—Soil Quality, Determination of Particle Size Distribution in Mineral Soil Material, Method by Sieving and Sedimentation (International Organization for Standardization, Geneva, 2009).Google Scholar
  22. 22.
    ISO 14235:1998—Soil Quality, Determination of Organic Carbon by Sulfochromic Oxidation (International Organization for Standardization, Geneva, 1998).Google Scholar
  23. 23.
    ISO 11466: 1995—Soil Quality, Extraction of Trace Elements Soluble in Aqua Regia (International Organization for Standardization, Geneva, 1995).Google Scholar
  24. 24.
    ISO 19258:2018—Soil Quality, Guidance on the Determination of Background Values (International Organization for Standardization, Geneva, 2018).Google Scholar
  25. 25.
    IUSS Working Group, World Reference Base for Soil Resources, World Soil Resource Report No. 103 (Food and Agricultural Organization, Rome, 2014).Google Scholar
  26. 26.
    J. Jarva, T. Tarvainen, J. Reinikainen, and M. Eklund, “TAPIR—Finnish national geochemical baseline database,” Sci. Total Environ. 408 (20), 4385–4395 (2010).  https://doi.org/10.1016/j.scitotenv.2010.06.050 CrossRefGoogle Scholar
  27. 27.
    A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants (CRC Press, Boca Raton, FL, 1992)Google Scholar
  28. 28.
    A. Kabata-Pendias and H. Pendia, Trace Element in Soil and Plants (CRC Press, Boca Raton, FL, 2001).Google Scholar
  29. 29.
    W. Köppen, “Klassifikation der Klimate nach Temperatur” Niederschlag und Jahreslauf,” Petermanns Geogr. Mitt. 64, 193–203 (1918).Google Scholar
  30. 30.
    I. Massas, C. Ehliotis, S. Gerontidis, and E. Sarris, “Elevated heavy metal concentrations in top soils of an Aegean island town (Greece): total and available forms, origin and distribution,” Environ. Monit. Assess. 151 (1–4) 105–116 (2009).  https://doi.org/10.1007/s10661-008-0253-2 CrossRefGoogle Scholar
  31. 31.
    J. Matschullat, R. Ottenstein, and C. Reimann, “Geochemical background—Can we calculate it?” Environ. Geol. 39 (9), 990–1000 (2000).  https://doi.org/10.1007/s002549900084 CrossRefGoogle Scholar
  32. 32.
    R. McIlwaine, S. Cox, R. Doherty, S. Palmer, U. Ofterdinger, and J.M. McKinley, “Comparison of methods used to calculate typical threshold values for potentially toxic elements in soil,” Environ. Geochem. Health 36 (5), 953–971 (2014).  https://doi.org/10.1007/s10653-014-9611-x CrossRefGoogle Scholar
  33. 33.
    Government Decree on the Assessment of Soil Contamination and Remediation Needs (Ministry of the Environment of Finland, Helsinki, 2007), No. 214/2007.Google Scholar
  34. 34.
    S. Miko, J. Halamić, Z. Peh, and J. Galović, “Geochemical baseline mapping of soils developed on diverse bedrock from two regions in Croatia,” Geol. Croat. 54 (1), 53–118 (2001).Google Scholar
  35. 35.
    Official Gazette Regulation on Protection of Agricultural Land in the Republic of Croatia: Narodne Novine–NN 9/14 (Zagreb, 2014) [in Croatian].Google Scholar
  36. 36.
    B. Palumbo, M. Angelone, A. Bellanca, C. Dazzi, S. Hauser, R. Neri, and J. Wilson, “Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy,” Geoderma 95 (3–4) 247–266 (2000).  https://doi.org/10.1016/S0016-7061(99)00090-7 CrossRefGoogle Scholar
  37. 37.
    J. Pamić, I. Gušić, and V. Jelaska, “Geodynamic evolution of the Central Dinarides,” Tectonophysics 297 (1–4) 251–268 (1998).  https://doi.org/10.1016/S0040-1951(98)00171-1 CrossRefGoogle Scholar
  38. 38.
    Z. Peh, S. Miko, and D. Bukovec, “The geochemical background in Istrian soils,” Nat. Croat. 12 (4), 195–232 (2003).Google Scholar
  39. 39.
    C. Rambeau, Thèse de Doctorat (Université de Neuchâtel, Neuchâtel, 2006)Google Scholar
  40. 40.
    C. M. C Rambeau, D. Baize, N. Saby, V. Matera, T. Adatte, and K. B. Föllmi, “High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soil: a case study in Lower Burgundy, France,” Environ. Earth Sci. 61, 1573–1585 (2010).  https://doi.org/10.1007/s12665-010-0471-0 CrossRefGoogle Scholar
  41. 41.
    C. Reimann, U. Siewers, T. Tarvainen, L. Bityukova, J. Eriksson, A. Gilucis, et al., Agricultural Soils in Northern Europe: A Geochemical Atlas, Ed. by D. Reihe (Geologisches Jahrbuch, Stuttgart, 2003)Google Scholar
  42. 42.
    C. Reimann and R.G. Garrett, “Geochemical background—concept and reality,” Sci. Total Environ. 350 (1–3), 12–27 (2005).  https://doi.org/10.1016/j.scitotenv.2005.01.047 CrossRefGoogle Scholar
  43. 43.
    C. Reimann, P. Filzmoser, and R.G. Garrett, “Background and threshold: critical comparison of methods of determination,” Sci. Total Environ. 346 (1–3), 1–16 (2005).  https://doi.org/10.1016/j.scitotenv.2004.11.023 CrossRefGoogle Scholar
  44. 44.
    C. Reimann and P. de Caritat, “Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry,” Environ. Sci. Technol. 34 (24) 5084–5091 (2000).  https://doi.org/10.1021/es001339o CrossRefGoogle Scholar
  45. 45.
    C. Reimann and P. de Caritat, “Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors,” Sci. Total Environ. 337 (1–3), 91–107 (2005).  https://doi.org/10.1016/j.scitotenv.2004.06.011 CrossRefGoogle Scholar
  46. 46.
    C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter, Statistical Data Analysis Explained. Applied Environmental Statistics (Wiley, Chichester, 2008).CrossRefGoogle Scholar
  47. 47.
    C. Reimann, A. Demetriades, O. A. Eggen, and P. Filzmoser, The EuroGeoSurveys Geochemical Mapping of Agricultural and grazing land Soils project (GEMAS): NGU-Rapport 2011.043 (Geological Survey of Norway, Trondheim, 2011).Google Scholar
  48. 48.
    C. Reiman, K. Fabian, J. Schilling, D. Roberts, and P. Englmaier, “A strong enrichment of potentially toxic elements (PTEs) in Nord Trøndelag (central Norway) forest soil,” Sci. Total Environ. 536, 130–141 (2015).  https://doi.org/10.1016/j.scitotenv.2015.07.032 CrossRefGoogle Scholar
  49. 49.
    C. Reimann and P. de Caritat, “Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil,” Sci. Total Environ. 578, 633–648 (2017).  https://doi.org/10.1016/j.scitotenv.2016.11.010 CrossRefGoogle Scholar
  50. 50.
    C. Reimann, K. Fabian, M. Birke, P. Filzmoser, A. Demetriades, P. Negrel, K. Oorts, J. Matschullat, P. de Caritat, et al., “GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil,” Appl. Geochem. 88, 302–318 (2018).  https://doi.org/10.1016/j.apgeochem.2017.01.021 CrossRefGoogle Scholar
  51. 51.
    R. Salminen and T. Tarvainen, “The problem of defining geochemical baselines. A case study of selected elements and geological materials in Finland,” J. Geochem. Explor. 60 (1), 91–98 (1997).  https://doi.org/10.1016/S0375-6742(97)00028-9 CrossRefGoogle Scholar
  52. 52.
    R. Salminen, M. J. Batista, M. Bidovec, A. Demetriades, B. De Vivo, W. De Vos, M. Duris, A. Gilucis, V. Gregorauskiene, J. Halamić, P. Heitzmann, A. Lima, G. Jordan, G. Klaver, P. Klein, et al., Geochemical Atlas of Europe. Part 1—Background Information, Methodology and Maps (Geological Survey of Finland, Espoo, 2005)Google Scholar
  53. 53.
    Soil Survey Division Staff Soil Survey Manual: USDA Handbook No. 18 (U.S. Government Printing Office, Washington, 1993)Google Scholar
  54. 54.
    J. Sucharovà, I. Suchara, M. Hola, S. Marikova, C. Reimann, R. Boyd, P. Filzmoser, and P. Englmaier, “Top-/bottom-soil ratios and enrichment factors: What do they really show?” Appl. Geochem. 27 (1) 138–145 (2012). https://www.sciencedirect.com/science/article/ pii/S088329271100415X.  https://doi.org/10.1016/j.apgeochem.2011.09.025 CrossRefGoogle Scholar
  55. 55.
    A. Škorić, G. Filipovski, and M. Ćirić, Soil Classification of Yugoslavia (Academy of Sciences and Arts of Bosnia and Herzegovina, Sarajevo, 1985)Google Scholar
  56. 56.
    A. Škorić, M. Adam, F. Bašić, M. Bogunović, D. Cestar, J. Martinović, B. Mayer, B. Miloš, and Ž. Vidaček, Pedosphere of Istria (Projektni savjet Pedološke karte Hrvatske, Zagreb, 1987)Google Scholar
  57. 57.
    S. Temur, H. Orhan, and A. Deli, “Geochemistry of the limestone of Mortas Formation and related terra rossa, Seydisehir, Konya, Turkey,” Geochem. Int. 47 (1), 67–93 (2009).  https://doi.org/10.1134/S0016702909010054 CrossRefGoogle Scholar
  58. 58.
    J. W. Tukey, Exploratory Data Analysis (Addison Wesley, Reading, MA, 1977)Google Scholar
  59. 59.
    Environmental Risks and Challenges of Anthropogenic Metals Flows and Cycles, A Report of the Working Group on the Global Metal Flows (International Resource Panel, Nairobi, 2013).Google Scholar
  60. 60.
    W. Verheye and J. Ameryckx, “Mineral fractions and classification of soil texture,” Pedologie 34 (2), 215–225 (1984).Google Scholar
  61. 61.
    S. Vingiani, E. Di Iorio, C. Colombo, and F. Terribile, “Integrated study of Red Mediterranean soils from Southern Italy,” Catena 168, 129–140 (2018).  https://doi.org/10.1016/j.catena.2018.01.002 CrossRefGoogle Scholar
  62. 62.
    C. L. Yang, Z. F. Wu, H. H. Zhang, R. P. Guo, and Y. Q. Wu, “Risk assessment and distribution of soil Pb in Guandong, China,” Environ. Monit. Assess. 159 (1–4), 381–391 (2009).  https://doi.org/10.1007/s10661-008-0636-4 CrossRefGoogle Scholar
  63. 63.
    S. Yamasaki, A. Takeda, K. Nunohara, and N. Tsuchiya, “Red soils derived from limestone contain higher amounts of trace elements than those derived from various other parent materials,” Soil Sci. Plant Nutr. 59 (5), 692–699 (2013).  https://doi.org/10.1080/00380768.2013.822301 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute for Adriatic Crops and Karst ReclamationSplitCroatia
  2. 2.University of Zagreb Faculty of AgricultureZagrebCroatia

Personalised recommendations