Eurasian Soil Science

, Volume 52, Issue 12, pp 1477–1498 | Cite as

Morphology of Soils in the Impact Zone of Kuchiger Hot Springs, the Barguzin Depression

  • N. B. KhitrovEmail author
  • V. L. Ubugunov
  • V. I. Ubugunova
  • Yu. A. Rupyshev
  • T. A. Ayushina
  • A. D. Zhambalova
  • E. G. Tsyrempilov
  • A. E. Paramonova
  • Ts. N. Nasatueva


First data on the specific morphology and physicochemical properties of soils forming in the zone of active discharge of ascending solutions of deep thermal water of Kuchiger hot springs of the fluoride hydrosulfuric bicarbonate–sulfate–sodium type are presented. The soil cover was studied along the transect crossing the mire with active gas hydrothermal griffons, an island within the mire, and the adjacent margin of alluvial plain in the northwestern part of the Barguzin Depression near the village of Kuchiger, Kurumkan district of the Buryat Republic. The features of peat–mucky gley soils (Eutric Rheic Sapric Histosols (Fluvic, Sodic)) predominating within the mire are described. The profiles of weakly developed and alluvial soils (Eutric Sodic Gleyic Fluvisols (Epiloamic, Endoarenic, Humic)) forming under the impact of ascending gas hydrothermal fluids bear the features of turbation and impregnation with condensed organic matter in their mineral and organic horizons. These features are not included in the international and Russian soil classification systems. It is suggested that they should be diagnosed and indicated by symbols imp (various degrees of impregnation), int (intruded material), and IMP (black sandy–silty horizon strongly impregnated with condensed organic matter). The inclusion of these features into the list of diagnostic properties allows us to specify impregnated and hydrothermally turbated soil subtypes in the new Russian soil classification system. Hypotheses of the genesis of soils along the entire transect and the appearance of islands within the mire massif are suggested.


Baikal rift zone gas-hydrothermal fluids soil morphology impregnation with organic matter soil classification hydrogen sulfide pyrite soil salinization 



This study was partially supported by the Russian Foundation for Basic Research, project no. 18-04-00454a. It was performed within the framework of the budgetary theme on the study of evolution, functioning, and eco-biogeochemical role of soils in the Baikal region under conditions of aridization and desertification and the development of methods to manage their productive processes (project no. AAAA-A17-117011810038-7; FANO 0337-2016–0005.


  1. 1.
    Agrochemical Analysis of Soils (Nauka, Moscow, 1975) [in Russian].Google Scholar
  2. 2.
    O. A. Anenkhonov, “Relict plants in floras of hydrothermal ecosystems of Trans-Baikal region,” in Proceedings of the International Conference “Flora, Vegetation, and Plant Resources of Transbaikalia” (Chita Division, Buryat Scientific Center, Siberian Branch, Russian Academy of Sciences, Chita, 1997), pp. 28–30.Google Scholar
  3. 3.
    E. V. Arinushkina, Manual on the Chemical Analysis of Soils (Moscow State Univ., 1970) [in Russian].Google Scholar
  4. 4.
    S. N. Borisov, “Dragonflies (Odomata) of thermal springs in the Barguzin Depression of the Baikal rift zone, Russia,” Eurasian Entomol. J. 13 (2), 121–132 (2014).Google Scholar
  5. 5.
    A. F. Vadyunina and Z. A. Korchagina, Methods for Studying Soil Physical Properties (Agropromizdat, Moscow, 1986) [in Russian].Google Scholar
  6. 6.
    A. N. Gennadiev, A. R. Geptner, A. P. Zhidkin, S. S. Chernyanskii, and Yu. I. Pikovskii, “Exothermic and endothermic soils of Iceland,” Eurasian Soil Sci. 40, 595–607 (2007).CrossRefGoogle Scholar
  7. 7.
    V. A. Golubev, Conductive and Convective Heat Transfer in the Baikal Rift Zone (Geo, Novosibirsk, 2007) [in Russian].Google Scholar
  8. 8.
    I. L. Gol’dfarb, Candidate’s Dissertation in Geography (Moscow, 2005).Google Scholar
  9. 9.
    I. L. Gol’dfarb, “Effect of hydrothermal activity on the conditions of pedogenesis and soil morphology (by the example of Kamchatka),” Eurasian Soil Sci. 29, 1319–1324 (1996).Google Scholar
  10. 10.
    A. D. Zhambalova, Candidate’s Dissertation in Biology (Ulan-Ude, 2018).Google Scholar
  11. 11.
    A. V. Zavadskaya, I. N. Semenkov, V. V. Krupskaya, S. V. Zakusin, and D. M. Panicheva, “Transformation of soil and vegetation covers of thermal ecosystems affected by temperature in the Valley of Geysers (Kronotsky Nature Reserve),” Tr. Kronotskogo Gos. Prirod. Zapoved. 5, 26–39 (2017).Google Scholar
  12. 12.
    L. V. Zakhirikhina, Doctoral Dissertation in Biology (Novosibirsk, 2009).Google Scholar
  13. 13.
    V. P. Isaev, Natural Gases in the Barguzin Depression (Irkutsk State Univ., Irkutsk, 2006) [in Russian].Google Scholar
  14. 14.
    N. S. Kasimov, Geochemistry of Landscapes in Fault Zones of Kazakhstan (Moscow State Univ., Moscow, 1980) [in Russian].Google Scholar
  15. 15.
    L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  16. 16.
    V. A. Kovda, Fundamentals of Soil Science (Nauka, Moscow, 1973) [in Russian].Google Scholar
  17. 17.
    E. A. Kornblyum, I. S. Mikhailov, N. A. Nogina, and V. O. Targulian, Basic Scales of the Properties of Morphological Elements of Soils (Dokuchaev Soil Science Inst., Moscow, 1982) [in Russian].Google Scholar
  18. 18.
    D. N. Kostyuk and A. N. Gennadiev, “Soils and the soil cover of the Valley of Geysers,” Eurasian Soil Sci. 47, 529–539 (2014. CrossRefGoogle Scholar
  19. 19.
    The Red Data Book of the Republic of Buryatia: Rare and Endangered Species of the Plants and Fungi (Nauka, Novosibirsk, 2002) [in Russian].Google Scholar
  20. 20.
    O. V. Lunina, A. S. Gladkov, and N. N. Nevedrova, Rift Depressions in Trans-Baikal Region: Tectonic Structure and Evolution (Geo, Novosibirsk, 2009) [in Russian].Google Scholar
  21. 21.
    S. V. Lysak, “Terrestrial heat flux in active fault zones in the south of East Siberia,” Geol. Geofiz. 43, 791–803 (2002).Google Scholar
  22. 22.
    M. M. Makarov, Candidate’s Dissertation in Geography (Irkutsk, 2009).Google Scholar
  23. 23.
    B. B. Namsaraev, D. D. Barkhutova, E. V. Danilova, A. V. Bryanskaya, S. P. Buryukhaev, E. Zh. Garmaev, V. M. Gorlenko, O. P. Dagurova, V. B. Dambaev, S. V. Zaitseva, L. V. Zamana, V. V. Khakhinov, and A. V. Tatarinov, Geochemical Activity of Microorganisms in the Baikal Rift Zone (Geo, Novosibirsk, 2011) [in Russian].Google Scholar
  24. 24.
    A. S. Pleshanov and V. V. Takhteev, “Refugiums in Baikal Siberia as reserves of unique biodiversity,” in Proceedings of the Scientific-Practical Conference “Life Development Caused by Abiotic Changes on the Earth” (Russian Academy of Sciences, Novosibirsk, 2008), pp. 358–370 (2008).Google Scholar
  25. 25.
    A. M. Plyusnin, L. V. Zamana, S. L. Shvartsev, O. G. Tokarenko, and M. K. Chernyavskii, “Hydrogeochemical peculiarities of the composition of nitric thermal waters in the Baikal Rift Zone,” Russ. Geol. Geophys. 54, 495–508 (2013).CrossRefGoogle Scholar
  26. 26.
    Field Guide for Russian Soils (Dokuchaev Soil Science Inst., Moscow, 2008) [in Russian].Google Scholar
  27. 27.
    Soils of the Barguzin Depression (Nauka, Novosibirsk, 1983) [in Russian].Google Scholar
  28. 28.
    I. N. Semenkov, A. V. Zavadskaya, V. V. Krupskaya, S. V. Zakusin, G. V. Klink, and D. M. Panicheva, “Transformation of soil and vegetation cover in the areas of hydrothermal water springs in the valley of the Geizernaya River (Kronotsky Nature Reserve),” in Proceedings of the First Open Conference of Young Scientists Dedicated to the 90th Anniversary of the Dokuchaev Soil Science Institute “Soil Science: Future Horizons” (Dokuchaev Soil Science Institute, Moscow, 2017), Vol. 1, pp. 24–28.Google Scholar
  29. 29.
    V. I. Sizykh, T. T. Taisaev, and M. P. Lobanov, “A new view on genesis of Quaternary sandy sequences in the Baikal rift system,” Dokl. Earth Sci. 400, 13–16 (2005).Google Scholar
  30. 30.
    N. P. Solntseva and I. L. Gol’dfarb, “Genetic models of pedogenesis on the territory of modern thermal fields of Kamchatka,” in Regional Problems of Ecology, Geography, and Mapping of Soils (To the 100th Anniversary of Yu.A. Liverovskii) (Smolensk State Univ., Smolensk, 1998), pp. 122–142.Google Scholar
  31. 31.
    N. P. Solntseva and I. L. Gol’dfarb, “Geochemistry of landscapes of modern gas-hydrothermal fields of Kamchatka by the example of Pauzhetskoe field,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 2, 65–73 (1994).Google Scholar
  32. 32.
    T. T. Taisaev, Doctoral Dissertation in Geography (Irkutsk, 1994).Google Scholar
  33. 33.
    A. V. Tatarinov and B. N. Abramov, “The origin and oil and gas prospects of Mesozoic–Cenozoic rift basins in Transbaikalia,” Geotectonics 4, 295–305 (2001).Google Scholar
  34. 34.
    A. V. Tatarinov, L. I. Yalovik, and S. V. Kanakin, “Origin and mineral associations of rock assemblages at mud volcanoes: Southeastern Siberia,” J. Volcanol. Seismol. 10, 248–262 (2016). CrossRefGoogle Scholar
  35. 35.
    V. V. Takhteev, A. S. Pleshanov, I. N. Egorova, E. A. Sudakova, G. L. Okuneva, G. I. Pomazkova, T. Ya. Sitnikova, L. S. Kravtsova, N. A. Rozhkova, and A. V. Galimzyanova, “General features and development of aquatic and terrestrial biota in thermal and mineral water springs of Baikal region,” Izv. Irkutsk. Gos. Univ., Ser. Biol., Ekol. 3, 33–37 (2010).Google Scholar
  36. 36.
    V. L. Ubugunov, V. I. Ubugunova, and E. G. Tsyrempilov, Soils and Landforms of the Barguzin Depression (Buryat Scientific Center, Siberian Branch, Russian Academy of Sciences, Ulan-Ude, 2016) [in Russian].Google Scholar
  37. 37.
    V. L. Ubugunov, V. I. Ubugunova, N. P. Chizhikova, E. B. Varlamov, N. B. Khitrov, and D. A. Zhambalova, “Solonchaks in the zones of tectonic faults inof the north of Barguzin Depression (Buryatia, Russia),” Prirod. Vnutr. Azii, No. 2 (3), 38–48 (2017). CrossRefGoogle Scholar
  38. 38.
    V. L. Ubugunov, E. G. Tsyrempilov, G. I. Chernousenko, V. I. Ubugunova, D. A. Zhambalova, and A. E. Paramonova, “Solonchaks of the northern margin of Central Asian arid zone,” Sovrem. Probl. Nauki Obraz., No. 5, 9 (2015).Google Scholar
  39. 39.
    V. L. Ubugunov, N. B. Khitrov, N. P. Chizhikova, V. I. Ubugunova, E. B. Varlamov, D. A. Zhambalova, and E. S. Chechetko, “Properties and mineralogical composition of dark humus quazigleyic solonetzic cryoturbated permafrost-affected soil in the Barguzin Depression (Buryatia),” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 91, 62–94 (2018). CrossRefGoogle Scholar
  40. 40.
    G. I. Chernousenko, E. I. Pankova, N. V. Kalinina, V. I. Ubugunova, D. I. Rukhovich, V. L. Ubugunov, and E. G. Tsyrempilov, “Salt-affected soils of the Barguzin Depression,” Eurasian Soil Sci. 50, 646–663 (2017). CrossRefGoogle Scholar
  41. 41.
    M. K. Chernyavskii, Candidate’s Dissertation in Geography (Ulan-Ude, 2006).Google Scholar
  42. 42.
    M. K. Chernyavskii, A. M. Plyusnin, S. G. Doroshkevich, and R. Ts. Budaev, “Recreational-balneological features of the northeastern part of the Barguzin Basin,” Geogr. Prirod. Resur., No. 2, 63–72 (2018).
  43. 43.
    D. Cross, “Soils and geology of some hydrothermal eruptions in the Waiotapu district,” N. Z. J. Geol. Geophys. 6 (1), 70–87 (1963). CrossRefGoogle Scholar
  44. 44.
    N. G. Granin, S. I. Muyakshin, M. M. Makarov, K. M. Kucher, I. A. Aslamov, L. Z. Granina, and I. B. Mizandrontsev, “Estimation of methane fluxes from bottom sediments of Lake Baikal,” Geo-Mar. Lett. 32 (5), 427–436 (2012). CrossRefGoogle Scholar
  45. 45.
    Guidelines for Soil Description (Food and Agriculture Organization, Rome, 2006).Google Scholar
  46. 46.
    A. E. Hewitt, New Zealand Soil Classification (New Zealand Society of Soil Science, Queenstown, 1992), No. 19.Google Scholar
  47. 47.
    D. E. Hillel and R. S. Baker, “A descriptive theory of fingering during infiltration into layered soils,” Soil Sci. 146 (1), 52–56 (1988).CrossRefGoogle Scholar
  48. 48.
    IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015).Google Scholar
  49. 49.
    K. J. S. Kung, “Preferential flow in sandy Vadoze zone: 2. Mechanism and implications,” Geoderma 46 (1–3), 59–71 (1990).CrossRefGoogle Scholar
  50. 50.
    C. M. U. Neale, C. Jaworowski, H. Heasler, S. Sivarajan, and A. Masih, “Hydrothermal monitoring in Yellowstone National Park using airborne thermal infrared remote sensing,” Remote Sens. Environ. 184, 628–644 (2016). CrossRefGoogle Scholar
  51. 51.
    C. C. Trettin and L. J. Bartelli, “Characterization of soils in Yellowstone National Park,” in University of Wyoming National Park Service Research Center Annual Report (University of Wyoming the National Park Service, Moran, WY, 1982), Vol. 6, art. 25. http://repository. Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. B. Khitrov
    • 1
    Email author
  • V. L. Ubugunov
    • 2
  • V. I. Ubugunova
    • 2
  • Yu. A. Rupyshev
    • 2
  • T. A. Ayushina
    • 2
  • A. D. Zhambalova
    • 2
  • E. G. Tsyrempilov
    • 2
  • A. E. Paramonova
    • 2
  • Ts. N. Nasatueva
    • 2
  1. 1.Dokuchaev Soil Science InstituteMoscowRussia
  2. 2.Institute of General and Experimental Biology, Siberian Branch of the Russian Academy of SciencesUlan-UdeRussia

Personalised recommendations