Advertisement

Eurasian Soil Science

, Volume 52, Issue 12, pp 1608–1621 | Cite as

Metals, Metalloids, and Benzo[a]pyrene in PM10 Particles of Soils and Road Dust of Alushta City

  • N. S. Kasimov
  • L. A. BezberdayaEmail author
  • D. V. Vlasov
  • M. Yu. Lychagin
DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • 10 Downloads

Abstract

The chemical composition of PM10 particles (<10 μm or 0.01 mm in diameter) of urban soils in different functional zones and in road dust on different types of roads in the city of Alushta was determined for the first time. The studied urban soils and road dust accumulate Zn, Sb, Pb, Cu, Cd, and benzo[a]pyrene (BaP) mainly supplied by motor vehicles. The rate of ecological hazard of contamination of PM10 particles by heavy metals (HMs) and BaP in soils and dust was assessed, and the spatial distribution of the pollutants was studied. The total contamination of soils and road dust by HMs is low, whereas their pollution by BaP is extremely high within about 50% of the city area. The concentrations of BaP and many HMs in PM10 particles is 1.5–4 times higher than their content in the bulk soil mass, which determines the hazardous contamination level of PM10 particles in the soil over about 25% of the city area and in road dust particles over about 70% of the area. The most contaminated PM10 particles were revealed in soils of the transport and residential–recreational zones and in road dust along large roads. The seasonal variability of contamination of PM10 road dust particles by HMs was studied. In winter, the contents of HMs related to vehicle emissions (Zn, Cd, Sn, Sb, and Pb) decreases, whereas the concentrations of HMs released from heating systems (Mo and Bi) rises. The behavior of other HMs is virtually independent on the season.

Keywords:

PM10 particles soil and road dust contamination heavy metals Urbic Technosols 

Notes

ACKNOWLEDGMENTS

The authors are grateful to A.Yu. Trishin, G.L. Shinkareva, M.A. Kotwica, A.V. Ryzhov, and A.N. Tkachenko for the assistance at field and laboratory works and to N.I. Khlynina and analysts of the laboratory of the Fedorovsky All-Russia Research Institute of Mineral Resources for the determination of BaP and HM concentrations in the collected samples.

FUNDING

This work was supported by the Russian Geographical Society, project no. 20/2018-I “The Crimean Expedition.”

REFERENCES

  1. 1.
    T. A. Alekseeva and T. A. Teplitskaya, Spectrofluorimetric Analysis of Aromatic Hydrocarbons in Natural and Technogenic Media (Gidrometeoizdat, Leningrad, 1981) [in Russian].Google Scholar
  2. 2.
    L. A. Bagrova, V. A. Bokov, and N. V. Bagrov, Geography of Crimea (Lybid’, Kyiv, 2001) [in Russian].Google Scholar
  3. 3.
    V. R. Bityukova, D. V. Vlasov, M. F. Dorokhova, N. S. Kasimov, N. Yu. Kislyakova, P. L. Kirillov, N. E. Kosheleva, E. M. Nikiforova, N. V. Petukhova, A. V. Ryzhov, M. S. Savoskul, T. D. Saul’skaya, and N. V. Shartova, East–West of Moscow: Spatial Analysis of Social-Ecological Problems (Moscow, 2016) [in Russian].Google Scholar
  4. 4.
    A. F. Vadyunina and Z. A. Korchagina, Methods for Studying Soil Physical Properties (Agropromizdat, Moscow, 1986) [in Russian].Google Scholar
  5. 5.
    D. V. Vlasov, N. S. Kasimov, and N. E. Kosheleva, “Geochemistry of road dust in the Eastern district of Moscow,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 1, 23–33 (2015) [in Russian].Google Scholar
  6. 6.
    Geochemistry of the Environment (Nedra, Moscow, 1990) [in Russian].Google Scholar
  7. 7.
    N. A. Grigor’ev, Distribution of Chemical Elements in the Upper Layer of continental Crust (Ural Branch, Russian Academy of Sciences, Yekaterinburg, 2009) [in Russian].Google Scholar
  8. 8.
    Detailed plan of the territory of Alushta city, Alushta Municipality official website, 2015. http://alushta-adm. ru/wp-content/uploads/2014/03/ДПT.jpg. [in Russian].Google Scholar
  9. 9.
    A Report “The State and Protection of Environment in the Crimean Republic in 2016” (Izhevsk, 2017) [in Russian].Google Scholar
  10. 10.
    N. S. Kasimov, D. V. Vlasov, N. E. Kosheleva, and E. M. Nikiforova, Landscape Geochemistry of the Eastern Moscow (APR, Moscow, 2016) [in Russian].Google Scholar
  11. 11.
    N. S. Kasimov, N. E. Kosheleva, D. V. Vlasov, and E. V. Terskaya, “Geochemistry of snow cover in the Eastern district of Moscow,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 4, 14–24 (2012) [in Russian].Google Scholar
  12. 12.
    B. M. Kogut, E. Schulz, A. Yu. Galaktionov, and N. A. Titova, “Concentrations and composition of polycyclic aromatic hydrocarbons in the granulodensimetric fractions of soils in Moscow parks,” Eurasian Soil Sci. 39, 1066–1073 (2006).CrossRefGoogle Scholar
  13. 13.
    I. V. Kostenko, Atlas of Soils of Mountainous Crimea (Agrarnaya Nauka, Kyiv, 2014) [in Russian].Google Scholar
  14. 14.
    N. E. Kosheleva, N. S. Kasimov, and D. V. Vlasov, “Factors of the accumulation of heavy metals and metalloids at geochemical barriers in urban soils,” Eurasian Soil Sci. 48, 476–492 (2015).  https://doi.org/10.1134/S1064229315050038 CrossRefGoogle Scholar
  15. 15.
    N. E. Kosheleva and E. M. Nikiforova, “Multiyear dynamics and factors of accumulation of benzo[a]pyrene in urban soils (on the example of the Eastern Administrative Okrug, Moscow),” Moscow Univ. Soil Sci. Bull. 66, 65–74 (2011).CrossRefGoogle Scholar
  16. 16.
    Yu. I. Pikovskiy, A. N. Gennadiev, R. G. Kovach, A. P. Zhidkin, N. I. Khlynina, and A. Yu. Kiseleva, “Hydrocarbon status of soils in the asphalt deposit area (Samara Bend),” Eurasian Soil Sci. 50, 412–421 (2017).  https://doi.org/10.1134/S106422931704007X CrossRefGoogle Scholar
  17. 17.
    B. A. Revich, “Fine suspended particles in atmospheric air and their effect on health of residents of megapolises,” Probl. Ekol. Monit. Model. Ekosist., No. 3, 53–78 (2018) [in Russian].Google Scholar
  18. 18.
    A. S. Tsibart and A. N. Gennadiev, “Polycyclic aromatic hydrocarbons in soils: sources, behavior, and indication significance (a review),” Eurasian Soil Sci. 46, 728–741 (2013).  https://doi.org/10.1134/S1064229313070090 CrossRefGoogle Scholar
  19. 19.
    J. A. Acosta, C. A. Faz, J. M. Arocena, F. Debela, and S. Martinez-Martinez, “Distribution of metals in soil particle size fraction and its implication to risk assessment of playgrounds in Murcia City (Spain),” Geoderma 149, 101–109 (2009).  https://doi.org/10.1016/j.geoderma.2008.11.034 CrossRefGoogle Scholar
  20. 20.
    J. A. Acosta, C. A. Faz, K. Kalbitz, B. Jansen, and S. Martinez-Martinez, “Heavy metal concentrations in particle size fractions from street dust of Murcia (Spain) as the basis for risk assessment,” J. Environ. Monit. 13, 3087–3096 (2011).  https://doi.org/10.1039/C1EM10364D CrossRefGoogle Scholar
  21. 21.
    F. Ajmone-Marsan, M. Biasioli, T. Kralj, H. Grčman, C. M. Davidson, A. S. Hursthouse, L. Madrid, and S. Rodrigues, “Metals in particle-size fractions of the soils of five European cities,” Environ. Pollut. 152, 73–81 (2008).  https://doi.org/10.1016/j.envpol.2007.05.020 CrossRefGoogle Scholar
  22. 22.
    F. Amato, A. Alastuey, A. Karanasiou, F. Lucarelli, S. Nava, G. Calzolai, M. Severi, S. Becagli, V. L. Gianelle, C. Colombi, C. Alves, D. Custodio, T. Nunes, M. Cerqueira, et al., “AIRUSE–LIFE+: A harmonized PM speciation and source apportionment in five southern European cities,” Atmos. Chem. Phys. 16, 3289–3309 (2016).  https://doi.org/10.5194/acp-16-3289-2016 CrossRefGoogle Scholar
  23. 23.
    F. Amato, M. Pandolfi, M. Viana, X. Querol, A. Alastuey, and T. Moreno, “Spatial and chemical patterns of PM10 in road dust deposited in urban environment,” Atmos. Environ. 43, 1650–1659 (2009).  https://doi.org/10.1016/j.atmosenv.2008.12.009 CrossRefGoogle Scholar
  24. 24.
    C. Ballabio, P. Panagos, E. Lugato, J.-H. Huang, A. Orgiazzi, A. Jones, O. Fernandez-Ugalde, P. Borrelli, and L. Montanarella, “Copper distribution in European topsoils: an assessment based on LUCAS soil survey,” Sci. Total Environ. 636, 282–298 (2018).  https://doi.org/10.1016/j.scitotenv.2018.04.268 CrossRefGoogle Scholar
  25. 25.
    N. Bortey-Sam, Y. Ikenaka, Sh. M. M. Nakayama, O. Akoto, Y. B. Yohannes, E. Baidoo, H. Mizukawa, and M. Ishizuka, “Occurrence, distribution, sources and toxic potential of polycyclic aromatic hydrocarbons (PAHs) in surface soils from the Kumasi Metropolis, Ghana,” Sci. Total Environ. 496, 471–478 (2014).  https://doi.org/10.1016/j.scitotenv.2014.07.071 CrossRefGoogle Scholar
  26. 26.
    A. Demetriades and M. Birke, Urban Geochemical Mapping Manual: Sampling, Sample Preparation, Laboratory Analysis, Quality Control Check, Statistical Processing and Map Plotting (EuroGeoSurveys, Brussels, 2015).Google Scholar
  27. 27.
    Emission standards. EU: cars and light trucks, DieselNet. https://www.dieselnet.com/standards/eu/ld.php.Google Scholar
  28. 28.
    P. Fernandez, R. M. Vilanova, C. Martínez, P. Appleby, and J. O. Grimalt, “The historical record of atmospheric pyrolytic pollution over Europe registered in the sedimentary PAH from remote mountain lakes,” Environ. Sci. Technol. 34, 1906–1913 (2000).  https://doi.org/10.1021/es9912271 CrossRefGoogle Scholar
  29. 29.
    T. Grigoratos and G. Martini, “Brake wear particle emissions: a review,” Environ. Sci. Pollut. Res. 22 (4), 2491–2504 (2015).  https://doi.org/10.1007/s11356-014-3696-8 CrossRefGoogle Scholar
  30. 30.
    S. Gulia, S. Nagendra, M. Khare, and I. Khanna, “Urban air quality management—a review,” Atmos. Pollut. Res. 6, 286–304 (2015).  https://doi.org/10.5094/APR.2015.033 CrossRefGoogle Scholar
  31. 31.
    Z. Hu and S. Gao, “Upper crustal abundances of trace elements: a revision and update,” Chem. Geol. 253, 205–221 (2008).  https://doi.org/10.1016/j.chemgeo.2008.05.010 CrossRefGoogle Scholar
  32. 32.
    N. S. Kasimov, N. E. Kosheleva, E. M. Nikiforova, and D. V. Vlasov, “Benzo[a]pyrene in urban environments of eastern Moscow: pollution levels and critical loads,” Atmos. Chem. Phys. 17, 2217–2227 (2017).  https://doi.org/10.5194/acp-17-2217-2017 CrossRefGoogle Scholar
  33. 33.
    S. Kong, B. Lu, Y. Ji, X. Zhao, Z. Bai, Y. Xu, Y. Liu, and H. Jiang, “Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying city, Shandong Province, China,” J. Environ. Monit. 14, 791–803 (2012).  https://doi.org/10.1039/C1EM10555H CrossRefGoogle Scholar
  34. 34.
    W. M. Landing, J. M. Caffrey, S. D. Nolek, K. J. Gosnell, and W. C. Parker, “Atmospheric wet deposition of mercury and other trace elements in Pensacola, Florida,” Atmos. Chem. Phys. 10, 4867–4877 (2010).  https://doi.org/10.5194/acp-10-4867-2010 CrossRefGoogle Scholar
  35. 35.
    G. Liu, J. Wang, X. Liu, X. Liu, X. Li, Y. Ren, J. Wang, and L. Dong, “Partitioning and geochemical fractions of heavy metals from geogenic and anthropogenic sources in various soil particle size fractions,” Geoderma 312, 104–113 (2018).  https://doi.org/10.1016/j.geoderma.2017.10.013 CrossRefGoogle Scholar
  36. 36.
    X.-S. Luo, S. Yu, and X.-D. Li, “Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: implications for assessing the risk to human health,” Environ. Pollut. 159, 1317–1326 (2011).  https://doi.org/10.1016/j.envpol.2011.01.013 CrossRefGoogle Scholar
  37. 37.
    S. Müller, W. Wilcke, N. Kanchanacool, and W. Zeck, “Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in particle-size separates of urban soils in Bangkok, Thailand,” Soil Sci. 165 (5), 412–419 (2000).CrossRefGoogle Scholar
  38. 38.
    National Emissions Inventory 2014, United States Environmental Protection Agency, 2014. https://www.epa. gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data. Accessed March 25, 2019.Google Scholar
  39. 39.
    E. Padoan, C. Rome, and F. Ajmone-Marsan, “Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect,” Sci. Total Environ. 601–602, 89–98 (2017).  https://doi.org/10.1016/j.scitotenv.2017.05.180 CrossRefGoogle Scholar
  40. 40.
    K. Ravindra, R. Sokhi, and R. van Grieken, “Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation,” Atmos. Environ. 42 (13), 2895–2921 (2008).  https://doi.org/10.1016/j.atmosenv.2007.12.010 CrossRefGoogle Scholar
  41. 41.
    R. L. Rudnick and S. Gao, “Composition of the continental crust,” in Treatise on Geochemistry (Elsevier, Amsterdam, 2003), Vol. 3, pp. 1–64.  https://doi.org/10.1016/B0-08-043751-6/03016-4 Google Scholar
  42. 42.
    S. Ruyters, P. Salaets, K. Oorts, and E. Smolders, “Copper toxicity in soils under established vineyards in Europe: a survey,” Sci. Total Environ. 443, 470–477 (2013).  https://doi.org/10.1016/j.scitotenv.2012.11.001 CrossRefGoogle Scholar
  43. 43.
    I. B. Tager, “Health effects of aerosols: mechanisms and epidemiology,” in Aerosols Handbook: Measurement, Dosimetry, and Health Effects, Ed. by L. S. Ruzer and N. H. Harley (CRC Press, Boca Raton, 2005), pp. 619–696.Google Scholar
  44. 44.
    G. Wang, M. Yang, H. L. Jia, L. Zhou, and Y. F. Li, “Polycyclic aromatic hydrocarbons in urban street dust and surface soil: comparisons of concentration, profile, and source,” Arch. Environ. Contam. Toxicol. 56, 173–180 (2009).  https://doi.org/10.1007/s00244-008-9182-x CrossRefGoogle Scholar
  45. 45.
    X. S. Wang, Y. Qin, and Y. K. Chen, “Heavy meals in urban roadside soils, part 1: effect of particle size fractions on heavy metals partitioning,” Environ. Geol. 50 (7), 1061–1066 (2006).  https://doi.org/10.1007/s00254-006-0278-1 CrossRefGoogle Scholar
  46. 46.
    X.-T. Wang, L. Chen, X.-K. Wang, B.-L. Lei, Y.‑F. Sun, J. Zhou, and M.-H. Wu, “Occurrence, sources and health risk assessment of polycyclic aromatic hydrocarbons in urban (Pudong) and suburban soils from Shanghai in China,” Chemosphere 119, 1224–1232 (2015).  https://doi.org/10.1016/j.chemosphere.2014.10.019 CrossRefGoogle Scholar
  47. 47.
    K. H. Wedepohl, “The composition of the continental crust,” Geochim. Cosmochim. Acta 59 (7), 1217–1232 (1995).  https://doi.org/10.1016/0016-7037(95)00038-2 CrossRefGoogle Scholar
  48. 48.
    L. Zhu, X. Huang, H. Shi, X. Cai, and Y. Song, “Transport pathways and potential sources of PM10 in Beijing,” Atmos. Environ. 45 (3), 594–604 (2011).  https://doi.org/10.1016/j.atmosenv.2010.10.040 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. S. Kasimov
    • 1
  • L. A. Bezberdaya
    • 1
    Email author
  • D. V. Vlasov
    • 1
  • M. Yu. Lychagin
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations