Advertisement

Eurasian Soil Science

, Volume 52, Issue 11, pp 1333–1346 | Cite as

Parameters of the Native Hydrocarbon Status of Soils in Different Bioclimatic Zones

  • Yu. I. PikovskiiEmail author
  • M. A. Smirnova
  • A. N. Gennadiev
  • Yu. A. Zavgorodnyaya
  • A. P. Zhidkin
  • R. G. Kovach
  • T. S. Koshovskii
SOIL CHEMISTRY
  • 8 Downloads

Abstract

To characterize the native component of the hydrocarbon status of soils in different bioclimatic zones, representative soils were studied in the East European Plain within the middle and southern taiga, forest-steppe, and semidesert zones. The samples were analyzed for the contents of hexane-soluble bitumens (bitumoids), normal and iso-alkanes (C14–C35), individual polycyclic aromatic hydrocarbons (PAHs, polyarenes), and soil hydrocarbon gases. It was found that the parameters of the native hydrocarbon status of soils are rather similar in different bioclimatic zones. For the background (uncontaminated) soils forming on interfluves, the following concentrations of native hydrocarbons were determined: up to 25 ppm (often, less than 5 ppm) of hexane bitumoid, no more than 60 ppb of the sum of 11 PAHs, and no more than 1 ppb of individual n-alkanes. Polyarenes were represented mainly by the lightest two- and three-ring compounds. The content of hydrocarbon gases retained by the soils varied widely. In 100% of cases, methane was the most common gas (from 1.8 to 3994 ppmv, 5.14 ppmv on average). Ethylene was less common (0.04–54.5 ppmv, 4.1 ppmv on average). Heavier alkane gases were less common and were present in amounts ranging from 0.02 to 4.09 ppmv (on average, 0.53 ppmv).

Keywords:

bitumoids polycyclic aromatic hydrocarbons alkanes retained hydrocarbon gases Albic Podzols Albic Retisols (Ochric) Luvic Retic Greyzemic Phaeozems Haplic Kastanozems (Sodic) Haplic Chernozems 

Notes

FUNDING

This study was supported by the Russian Science Foundation, project no. 14-17-00193).

REFERENCES

  1. 1.
    T. A. Alekseeva and T. A. Teplitskaya, Spectral Fluorimetric Analysis of Polycyclic Aromatic Hydrocarbons in Natural and Technogenic Environments (Gidrometeoizdat, Leningrad, 1981) [in Russian].Google Scholar
  2. 2.
    N. A. Anokhina, V. V. Demin, and Yu. A. Zavgorodnyaya, “Compositions of n-alkanes and n-methyl ketones in soils of the forest-park zone of Moscow,” Eurasian Soil Sci. 51, 637–646 (2018).CrossRefGoogle Scholar
  3. 3.
    V. A. Beznosikov, B. M. Kondratenok, and D. N. Gabov, “Polycyclic aromatic hydrocarbons in soils of background territories,” Inst. Biol., Komi Nauchn. Tsentr, No. 8, 6–10 (2004).Google Scholar
  4. 4.
    D. N. Gabov and V. A. Beznosikov, “Polycyclic aromatic hydrocarbons in tundra soils of the Komi Republic,” Eurasian Soil Sci. 47, 18–25 (2014).CrossRefGoogle Scholar
  5. 5.
    D. N. Gabov, V. A. Beznosikov, and B. M. Kondratenok, “Polycyclic aromatic hydrocarbons in background podzolic and gleyic peat-podzolic soils,” Eurasian Soil Sci. 40, 256–264 (2007).CrossRefGoogle Scholar
  6. 6.
    D. N. Gabov, V. A. Beznosikov, B. M. Kondratenok, and E. V. Yakovleva, “Formation of polycyclic aromatic hydrocarbons in northern and middle taiga soils,” Eurasian Soil Sci. 41, 1180–1188 (2008).CrossRefGoogle Scholar
  7. 7.
    A. N. Gennadiev, S. Del’vig, N. S. Kasimov, and T. A. Teplitskaya, “Polycyclic aromatic hydrocarbons in soils of background territories and natural pedogenesis,” in Monitoring of Background Pollutions of Environment (Gidrometeoizdat, Leningrad, 1989), No. 5, pp. 149–161.Google Scholar
  8. 8.
    A. N. Gennadiev, A. Yu. Kiseleva, Yu. I. Pikovskii, and M. A. Smirnova, “Effect of the geological factor on polyarenes in soils,” Eurasian Soil Sci. 51, 913–920 (2018).CrossRefGoogle Scholar
  9. 9.
    A. N. Gennadiev, Yu. I. Pikovskii, A. P. Zhidkin, R. G. Kovach, T. S. Koshovskii, M. A. Smirnova, N. I. Khlynina, and A. S. Tsibart, “Factors and features of the hydrocarbon status of soils,” Eurasian Soil Sci. 48, 1193–1206 (2015).CrossRefGoogle Scholar
  10. 10.
    A. N. Gennadiev, Yu. I. Pikovskii, M. A. Smirnova, A. P. Zhidkin, and R. G. Kovach, “Hydrocarbons in soils of background taiga landscapes (Southwestern part of Ust’yanskoe Plateau),” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 90–97 (2016).Google Scholar
  11. 11.
    A. N. Gennadiev, Yu. I. Pikovskii, A. S. Tsibart, and M. A. Smirnova, “Hydrocarbons in soils: origin, composition, and behavior (review),” Eurasian Soil Sci. 48, 1076–1089 (2015).  https://doi.org/10.1134/S1064229315100026 CrossRefGoogle Scholar
  12. 12.
    Geochemistry of Polycyclic Aromatic Hydrocarbons in Minerals and Soils, Ed. by A. N. Gennadiev and Yu. I. Pikovskii (Moscow State Univ., Moscow, 1996) [in Russian].Google Scholar
  13. 13.
    A. P. Zhidkin, A. N. Gennadiev, and T. S. Koshovskii, “Input and behavior of polycyclic aromatic hydrocarbons in arable, fallow, and forest soils of the taiga zone (Tver oblast),” Eurasian Soil Sci. 50, 296–304 (2017).  https://doi.org/10.1134/S1064229317030139 CrossRefGoogle Scholar
  14. 14.
    R. B. Il’ichev, M. V. Vakulenko, S. N. Zharikov, and B. A. Il’ichev, “The content of bitumoids in zonal soils of European Russia,” Eurasian Soil Sci. 34, 1242–1250 (2001).Google Scholar
  15. 15.
    A. A. Krasnopeeva, “Luminescent analysis of petroleum products in soils,” in Proceedings of Second International Scientific Conf. “Modern Problems of Soil Pollution” (Moscow, 2007), Vol. 2, pp. 200–203.Google Scholar
  16. 16.
    A. A. Krasnopeeva, “Natural bituminoids in soils of the forest zone: Luminescence diagnostics and content levels (Satino Research Station, Moscow State University),” Eurasian Soil Sci. 41, 1282–1293 (2008).CrossRefGoogle Scholar
  17. 17.
    A. A. Krasnopeeva and T. A. Puzanova, “Geochemical hydrocarbons in soils of southern taiga,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 33–40 (2011).Google Scholar
  18. 18.
    A. M. Levit, Analysis of Gas and Degassing in Exploration of Oil, Gas, and Coal Fields (Nedra, Moscow, 1974) [in Russian].Google Scholar
  19. 19.
    E. M. Nikiforova and T. A. Teplitskaya, “Polycyclic aromatic hydrocarbon in soils of the Valdai Upland,” Pochvovedenie, No. 9, 89–101 (1979).Google Scholar
  20. 20.
    Yu. I. Pikovskii, A. N. Gennadiev, A. A. Oborin, T. A. Puzanova, A. A. Krasnopeeva, and A. P. Zhidkin, “Hydrocarbon status of soils in an oil-producing region with karst relief,” Eurasian Soil Sci. 41, 1162–1170 (2008).CrossRefGoogle Scholar
  21. 21.
    F. Ya. Rovinskii, M. I. Afanas’ev, T. A. Teplitskaya, and T. A. Alekseeva, “Polycyclic aromatic hydrocarbons in the environment of background regions,” in Monitoring of Background Pollutions of Environment (Gidrometeoizdat, Leningrad, 1990), No. 6, pp. 3–14.Google Scholar
  22. 22.
    N. P. Solntseva, Oil Production and Geochemistry of Natural Landscapes (Moscow State Univ., Moscow, 1998) [in Russian].Google Scholar
  23. 23.
    A. S. Tsibart and A. N. Gennadiev, “Polycyclic aromatic hydrocarbons in background and pyrogenic soils of the Il’men Lowland (Polistovskii Nature Reserve),” in Proceedings of VII Conf. “Science and Modernity–2010” (Novosibirsk, 2010), Part 1, pp. 32–37.Google Scholar
  24. 24.
    E. I. Shurubor and A. N. Gennadiev, “Polycyclic aromatic hydrocarbons in irrigated soils of Chernye Zemli Nature Reserve (Kalmykia),” Pochvovedenie, No. 2, 97–111 (1992).Google Scholar
  25. 25.
    E. V. Yakovleva, V. A. Beznosikov, B. M. Kondratenok, and D. N. Gabov, “Bioaccumulation of polycyclic aromatic hydrocarbons in the soil-plant systems of the northern-taiga biocenoses,” Eurasian Soil Sci. 45, 309–320 (2012).  https://doi.org/10.1134/S1064229312030143 CrossRefGoogle Scholar
  26. 26.
    C. A. Belis, I. Offenthaler, and P. Weiss, “Semivolatiles in the forest environment: the case of PAHs,” in Organic Xenobiotics and Plants: From Mode of Action to Ecophysiology (Springer-Verlag, New York, 2001), Part 1, pp. 47–73.  https://doi.org/10.1007/978-90-481-9852-8_3.Google Scholar
  27. 27.
    R. T. Bush and F. A. McInerney, “Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA,” Org. Geochem. 79, 65–73 (2015).  https://doi.org/10.1016/j.orggeochem.2014.12.003 CrossRefGoogle Scholar
  28. 28.
    M. Gocke, Y. Kuzyakov, and G. L. B. Wiesenberg, “Differentiation of plant derived organic matter in soil, loess and rhizoliths based on n-alkane molecular proxies,” Biogeochemistry 112 (1–3), 23–40 (2013).  https://doi.org/10.1007/s10533-011-9659-y CrossRefGoogle Scholar
  29. 29.
    M. Krauss, W. Wilcke, and W. Zech, “Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in forest soils: depth distribution as indicator of different fate,” Environ. Pollut. 110, 79–88 (2000).  https://doi.org/10.1016/S0269-7491(99)00280-8 CrossRefGoogle Scholar
  30. 30.
    D. Y. F. Lai, “Methane dynamics in northern peatlands: a review,” Pedosphere 19 (4), 409–421 (2009).  https://doi.org/10.1016/S1002-0160(09)00003-4 CrossRefGoogle Scholar
  31. 31.
    Y. Li and Y. Xiong, “Identification and quantification of mixed sources of oil spills based on distributions and isotope profiles of long-chain n-alkanes,” Marine Pollut. Bull. 58, 1868–1873 (2009).  https://doi.org/10.1016/j.marpolbul.2009.07.020 CrossRefGoogle Scholar
  32. 32.
    P. A. Meyers, “Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes,” Org. Geochem. 34, 261–289 (2003).  https://doi.org/10.1016/S0146-6380(02)00168-7 CrossRefGoogle Scholar
  33. 33.
    P. A. Meyers and R. Ishiwatari, “Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments,” Org. Geochem. 20, 867–900 (1993).  https://doi.org/10.1016/0146-6380(93)90100-P CrossRefGoogle Scholar
  34. 34.
    N. Serrano-Silva, Y. Sarria-Guzman, L. Dendooven, and M. Luna-Guido, “Methanogenesis and methanotrophy in soil: a review,” Pedosphere 24 (3), 291–307 (2014).  https://doi.org/10.1016/S1002-0160(14)60016-3 CrossRefGoogle Scholar
  35. 35.
    W. Wilcke, “Polycyclic aromatic hydrocarbons (PAHs) in soil—a review,” J. Plant Nutr. Soil Sci. 163, 229–248 (2000).  https://doi.org/10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6 CrossRefGoogle Scholar
  36. 36.
    M. Zech, B. Buggle, K. Leiber, S. Markovic, B. Glaser, U. Hambach, B. Huwe, T. Stevens, P. Sumegi, G. Wiesenberg, and L. Zoller, “Reconstructing Quaternary vegetation history in the Carpathian Basin, SE Europe, using n-alkane biomarkers as molecular fossils: projects and possible solutions, potential and limitations,” Quat. Sci. J. 58, 148–155 (2009).Google Scholar
  37. 37.
    M. Zech, T. Krause, S. Meszner, and D. Faust, “Incorrect when uncorrected: Reconstructing vegetation history using n-alkane biomarkers in loess-paleosol sequences—A case study from the Saxonian loess region, Germany,” Quat. Int. 296, 108–116 (2013).  https://doi.org/10.1016/j.quaint.2012.01.023 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. I. Pikovskii
    • 1
    Email author
  • M. A. Smirnova
    • 1
  • A. N. Gennadiev
    • 1
  • Yu. A. Zavgorodnyaya
    • 1
  • A. P. Zhidkin
    • 1
  • R. G. Kovach
    • 1
  • T. S. Koshovskii
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations