Advertisement

Eurasian Soil Science

, Volume 52, Issue 11, pp 1414–1421 | Cite as

Seasonal Dynamics of Microbial Biomass in Soddy-Podzolic Soil

  • D. A. Nikitin
  • T. V. ChernovEmail author
  • A. D. Zhelezova
  • A. K. Tkhakakhova
  • S. A. Nikitina
  • M. V. Semenov
  • N. A. Xenofontova
  • O. V. Kutovaya
SOIL BIOLOGY
  • 27 Downloads

Abstract

The seasonal dynamics of the structure of microbial biomass in a soddy-podzolic soil under fallow was assessed using luminescent microscopy. Samples from three soil horizons (P, 5‒15 cm, BEL, 30‒40 cm, and BT2, 50‒60 cm) were sampled monthly from March, 2017 to February, 2018, in the territory of Eldigino experimental station (Moscow oblast). In addition to microbial biomass measurement, soil temperature and moisture were recorded. The microbial biomass at all sampling times was dominated by fungi (up to 93%). Minimal microbial population and biomass were observed in the period from November to March. The biomass of prokaryotes increased twofold in May, the maximal values were observed in August and September. The length of actinomycete mycelium was maximal in July and August, when the soil water content was the lowest. Maximal fungal biomass was observed in July and September. Seasonal changes of microbial biomass were most pronounced in the upper soil horizon P, while they were more even in the BEL and BT horizons. Using regression analysis, we revealed a significant effect of temperature and sampling depth on the fungal and prokaryotic biomass. The results indicate substantial seasonal variations in biomass of soil microbiota, which should be taken into account when comparing soils sampled at different seasons.

Keywords:

bacteria fungi actinomycetes luminescent microscopy Eutric Albic Retisol 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 17-16-01057.

REFERENCES

  1. 1.
    A. Agnelli, J. Ascher, G. Corti, M. T. Ceccherini, P. Nannipieri, and G. Pietramellara, “Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA,” Soil Biol. Biochem. 36 (5), 859–868 (2004).  https://doi.org/10.1016/j.soilbio.2004.02.004 CrossRefGoogle Scholar
  2. 2.
    N. D. Ananyeva, L. M. Polyanskaya, E. A. Susyan, I. V. Vasenkina, S. Wirth, and D. G. Zvyagintsev, “Comparative assessment of soil microbial biomass determined by the methods of direct microscopy and substrate-induced respiration,” Microbiology (Moscow) 77, 356–364 (2008).CrossRefGoogle Scholar
  3. 3.
    N. D. Ananyeva, E. A. Susyan, O. V. Chernova, I. Yu. Chernov, and O. L. Makarova, “The ratio of fungi and bacteria in the biomass of different types of soil determined by selective inhibition,” Microbiology (Moscow) 75, 702–707 (2006).CrossRefGoogle Scholar
  4. 4.
    Yu. A. Vinogradova, E. M. Lapteva, E. M. Perminova, S. S. Anisimov, and A. B. Novakovskii, “Microbial communities of podzolic soils on forest loggings in middle taiga,” Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk 16 (5), 74–80 (2014).Google Scholar
  5. 5.
    A. V. Golovchenko and L. M. Polyanskaya, “Seasonal dynamics of population and biomass of microorganisms in the soil profile,” Eurasian Soil Sci. 29, 1145–1150 (1996).Google Scholar
  6. 6.
    A. D. Zhelznova, O. V. Kutovaya, V. N. Dmitrenko, A. K. Tkhakakhova, and S. F. Khokhlov, “Evaluation of DNA quantity of various groups of microorganisms in genetic horizons of dark gray soils,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 78, 87–98 (2015).Google Scholar
  7. 7.
    D. G. Zvyagintsev, Practical Manual on Soil Microbiology and Biochemistry (Moscow, 1991) [in Russian].Google Scholar
  8. 8.
    L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  9. 9.
    O. E. Marfenina, D. A. Nikitin, and A. E. Ivanova, “The structure of fungal biomass and diversity of cultivated micromycetes in Antarctic soils (Progress and Russkaya Stations),” Eurasian Soil Sci. 49, 934–941 (2016).  https://doi.org/10.1134/S106422931608007X CrossRefGoogle Scholar
  10. 10.
    L. M. Polyanskaya, V. V. Geidebrekht, and D. G. Zvyagintsev, “Fungal biomass in various soil types,” Pochvovedenie, No. 5, 566–572 (1995).Google Scholar
  11. 11.
    L. M. Polyanskaya and D. G. Zvyagintsev, “The content and composition of microbial biomass as an index of the ecological status of soil,” Eurasian Soil Sci. 38, 625–633 (2005).Google Scholar
  12. 12.
    V. M. Semenov and B. M. Kogut, Soil Organic Matter (GEOS, Moscow, 2015) [in Russian].Google Scholar
  13. 13.
    M. V. Semenov, N. A. Manucharova, and A. L. Stepanov, “Distribution of metabolically active prokaryotes (Archaea and Bacteria) throughout the profiles of chernozem and brown semidesert soil,” Eurasian Soil Sci. 49, 217–225 (2016).  https://doi.org/10.1134/S1064229316020101 CrossRefGoogle Scholar
  14. 14.
    M. V. Semenov, E. V. Stolnikova, N. D. Ananyeva, and K. V. Ivashchenko, “Structure of the microbial community in soil catena of the right bank of the Oka River,” Biol. Bull. (Moscow) 40, 266–274 (2013).CrossRefGoogle Scholar
  15. 15.
    E. B. Skvortsova, V. A. Rozhkov, K. N. Abrosimov, K. A. Romanenko, S. F. Khokhlov, D. D. Khaidapova, V. V. Klyueva, and A. V. Yudina, “Microtomographic analysis of pore space in a virgin soddy-podzolic soil,” Eurasian Soil Sci. 49, 1250–1258 (2016).  https://doi.org/10.1134/S1064229316110090 CrossRefGoogle Scholar
  16. 16.
    E. A. Susyan, N. D. Ananyeva, and E. V. Blagodatskaya, “The antibiotic-aided distinguishing of fungal and bacterial substrate-induced respiration in various soil ecosystems,” Microbiology (Moscow) 74, 336–342 (2005).CrossRefGoogle Scholar
  17. 17.
    F. M. Khabibullina, E. G. Kuznetsova, and I. Z. Vaseneva, “Micromycetes in podzolic and bog-podzolic soils in the middle taiga subzone of northeastern European Russia,” Eurasian Soil Sci. 47, 1027–1032 (2014).  https://doi.org/10.1134/S1064229314100044 CrossRefGoogle Scholar
  18. 18.
    E. V. Shein, E. B. Skvortsova, A. V. Dembovetskii, K. N. Abrosimov, L. I. Il’in, and N. A. Shnyrev, “Pore-size distribution in loamy soils: A comparison between microtomographic and capillarimetric determination methods,” Eurasian Soil Sci. 49, 315–325 (2016).  https://doi.org/10.1134/S1064229316030091 CrossRefGoogle Scholar
  19. 19.
    M. S. Aulakh, R. Wassmann, C. Bueno, J. Kreuzwieser, and H. Rennenberg, “Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars,” Plant Biol. 3 (2), 139–148 (2001).  https://doi.org/10.1055/s-2001-12905 CrossRefGoogle Scholar
  20. 20.
    G. D. Bending, M. K. Turner, F. Rayns, M. C. Marx, and M. Wood, “Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes,” Soil Biol. Biochem. 36 (11), 1785–1792 (2004).  https://doi.org/10.1016/j.soilbio.2004.04.035 CrossRefGoogle Scholar
  21. 21.
    J. Bloem, “Microscopic methods for counting bacteria and fungi in soil,” in Methods in Applied Soil Microbiology and Biochemistry (Academic, New York, 1995), pp. 162–173.Google Scholar
  22. 22.
    N. Dechassa and M. K. Schenk, “Exudation of organic anions by roots of cabbage, carrot, and potato as influenced by environmental factors and plant age,” J. Plant Nutr. Soil Sci. 167 (5), 623–629 (2004).  https://doi.org/10.1002/jpln.200420424 CrossRefGoogle Scholar
  23. 23.
    D. Epron, V. Le Dantec, E. Dufrene, and A. Granier, “Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest,” Tree Physiol. 21 (2–3), 145–152 (2001).  https://doi.org/10.1093/treephys/21.2-3.145 CrossRefGoogle Scholar
  24. 24.
    A. J. Franzluebbers, F. M. Hons, and D. A. Zuberer, “Tillage and crop effects on seasonal soil carbon and nitrogen dynamics,” Soil Sci. Soc. Am. J. 59 (6), 1618–1624 (1995).  https://doi.org/10.2136/sssaj1995.03615995005900060016x CrossRefGoogle Scholar
  25. 25.
    H. Habashi, “Effect of forest and soil type on microbial biomass carbon and respiration,” Eurasian Soil Sci. 49, 1084–1089 (2016).  https://doi.org/10.1134/S1064229316090064 CrossRefGoogle Scholar
  26. 26.
    K. Isobe, H. Oka, T. Watanabe, R. Tateno, R. Urakawa, C. Liang, K. Senoo, and H. Shibata, “High soil microbial activity in the winter season enhances nitrogen cycling in a cool-temperate deciduous forest,” Soil Biol. Biochem. 124, 90–100 (2018).  https://doi.org/10.1016/j.soilbio.2018.05.028 CrossRefGoogle Scholar
  27. 27.
    R. G. Joergensen and F. Wichern, “Quantitative assessment of the fungal contribution to microbial tissue in soil,” Soil Biol. Biochem. 40 (12), 2977–2991 (2008).  https://doi.org/10.1016/j.soilbio.2008.08.017 CrossRefGoogle Scholar
  28. 28.
    K. S. Khan, R. Mack, X. Castillo, M. Kaiser, and R. G. Joergensen, “Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios,” Geoderma 271, 115–123 (2016).  https://doi.org/10.1016/j.geoderma.2016.02.019 CrossRefGoogle Scholar
  29. 29.
    S. Kramer, S. Marhan, H. Haslwimmer, L. Ruess, and E. Kandeler, “Temporal variation in surface and subsoil abundance and function of the soil microbial community in an arable soil,” Soil Biol. Biochem. 61, 76–85 (2013).  https://doi.org/10.1016/j.soilbio.2013.02.006 CrossRefGoogle Scholar
  30. 30.
    R. Kuhnert, V. Oberkofler, and U. Peintner, “Fungal growth and biomass development is boosted by plants in snow-covered soil,” Microb. Ecol. 64 (1), 79–90 (2012).  https://doi.org/10.1007/s00248-011-0001-y CrossRefGoogle Scholar
  31. 31.
    J. P. van Leeuwen, V. Djukic, J. Bloem, T. Lehtinen, L. Hemerik, P. C. Ruiter de, and G. J. Lair, “Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain,” Eur. J. Soil Biol. 79, 14–20 (2017).  https://doi.org/10.1016/j.ejsobV.2017.02.001 CrossRefGoogle Scholar
  32. 32.
    M. Lesiv, D. Schepaschenko, E. Moltchanova, R. Bun, M. Durauer, A. V. Prishchepov, F. Schierhorn, S. Estel, T. Kuemmerle, C. Alcántara, N. Kussul, M. Shchepashchenko, O. Kutovaya, O. Martynenko, V. Karminov, et al., “Spatial distribution of arable and abandoned land across former Soviet Union countries,” Sci. Data 5, 1–12 (2018).  https://doi.org/10.1038/sdata.2018.56 CrossRefGoogle Scholar
  33. 33.
    M. V. Semenov, T. V. Chernov, A. K. Tkhakakhova, A. D. Zhelezova, E. A. Ivanova, T. V. Kolganova, and O. V. Kutovaya, “Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century,” Apll. Soil Ecol. 127, 8–18 (2018).  https://doi.org/10.1016/j.apsoil.2018.03.002 CrossRefGoogle Scholar
  34. 34.
    M. S. Strickland and J. Rousk, “Considering fungal: bacterial dominance in soils—Methods, controls, and ecosystem implications,” Soil Biol. Biochem. 42 (9), 1385–1395 (2010).  https://doi.org/10.1016/j.soilbio.2010.05.007 CrossRefGoogle Scholar
  35. 35.
    F. T. Vries, E. Hoffland, N. van Eekeren, L. Brussaard, and J. Bloem, “Fungal/bacterial ratios in grasslands with contrasting nitrogen management,” Soil Biol. Biochem. 38 (8), 2092–2103 (2006).  https://doi.org/10.1016/j.soilbio.2006.01.008 CrossRefGoogle Scholar
  36. 36.
    D. Zhang, X. Sun, G. Zhou, J. Yan, Y. Wang, S. Liu, C. Zhou, J. Liu, X. Tang, J. Li, and Q. Zhang, “Seasonal dynamics of soil CO2 effluxes with responses to environmental factors in lower subtropical forests of China,” Sci. China, Ser. D: Earth Sci. 49 (2), 139–149 (2006).  https://doi.org/10.1007/s11430-006-8139-z CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. A. Nikitin
    • 1
  • T. V. Chernov
    • 1
    Email author
  • A. D. Zhelezova
    • 1
  • A. K. Tkhakakhova
    • 1
  • S. A. Nikitina
    • 2
  • M. V. Semenov
    • 1
  • N. A. Xenofontova
    • 1
    • 2
  • O. V. Kutovaya
    • 1
  1. 1.Dokuchaev Soil Science InstituteMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations