Advertisement

Eurasian Soil Science

, Volume 52, Issue 11, pp 1402–1413 | Cite as

Numerical Methods for Estimating the Soil Hydraulic Properties and the Wetting Front in the Soil

  • M. HachimiEmail author
  • A. Maslouhi
  • H. Qanza
  • K. Tamoh
SOIL PHYSICS
  • 17 Downloads

Abstract—

The unsaturated zone in the soil generally plays an important role in the transfer of water and pollutants in the underground environment. To simulate the water flow in this area, the relationships that express the variations of the water content and the hydraulic conductivity of the soil as a function of the pressure must be defined. In this context, determination of the hydrodynamic parameters constitutes an essential step for any study of the water and solutes transfers in the unsaturated zone. The purpose of this article is to identify the soil hydrodynamic parameters by direct method and inverse method, from the infiltration data by using the disc infiltrometer. These two methods of the characterization were applied on two plots: a plot of R’mel, sandy soil, and a M’risa plot, clay-loamy soil in northern Morocco. The results of the analytical and numerical modeling reproduced correctly the experimental measurements. A performance analysis of the models used was implemented to study the reliability of the estimated parameters. The values of RMSE ≈ 0.20 and R2 ≈ 0.90 show that the inverse method remains a robust and accurate method for determining the soil hydrodynamic parameters compared to other conventional methods.

Keywords:

unsaturated soil infiltration hydraulic parameters modeling Loukkos Basin 

REFERENCES

  1. 1.
    D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11 (2), 431–441 (1963).  https://doi.org/10.1137/0111030 CrossRefGoogle Scholar
  2. 2.
    F. Angulo-Jaramillo, J. P. Vandervaere, S. Roulier, J. L. Thony, J. P. Gaudet, and M. Vauclin, “Field measurement of soil surface hydraulic properties by disc and ring infiltrometers: a review and recent developments,” Soil Tillage Res. 55 (1–2), 1–29 (2000).  https://doi.org/10.1016/s0167-1987(00)00098-2 CrossRefGoogle Scholar
  3. 3.
    M. Hachimi, A. Maslouh, K. Tamoh, and H. Qanza, “Estimation of soil hydraulic properties of Basin Loukkos (Morocco) by inverse modeling,” KSCE J. Civ. Eng., 23, 1407–1419 (2019).  https://doi.org/10.1007/s12205-019-0628-7 CrossRefGoogle Scholar
  4. 4.
    H. Qanza, A. Maslouhi, and S. Abboudi, “Experience of inverse modeling for estimating hydraulic parameters of unsaturated soils,” Russ. Meteorol. Hydrol. 41, 779–788 (2016).  https://doi.org/10.3103/s1068373916110066 CrossRefGoogle Scholar
  5. 5.
    H. Qanza, A. Maslouhi, M. Hachimi, and A. Hmimou, “Inverse estimation of the hydro-dispersive properties of unsaturated soil using complex-variable-differentiation method under field experiments conditions,” Eurasian Soil Sci. 51, 1229–1239 (2018).  https://doi.org/10.1134/s1064229318100101 CrossRefGoogle Scholar
  6. 6.
    I. A. Sahabiev, S. S. Ryazanov, T. G. Kolcova, and B. R. Grigoryan, “Selection of a geostatistical method to interpolate soil properties of the state crop testing fields using attributes of a digital terrain model,” Eurasian Soil Sci. 51, 255–267 (2018).  https://doi.org/10.1134/s1064229318030122 CrossRefGoogle Scholar
  7. 7.
    J. M. Soria Ugalde, PhD Thesis (Grenoble Institute of Technology, Grenoble, 2003), pp. 41–47.Google Scholar
  8. 8.
    J. P. Vandervaere, M. Vauclin, and D. E. Elrick, “Transient flow from tension infiltrometers I. The two-parameter equation,” Soil Sci. Soc. Am. J. 64 (4), 1263–1272 (2000).  https://doi.org/10.2136/sssaj2000.6441263x CrossRefGoogle Scholar
  9. 9.
    K. M. Perroux and I. White, “Designs for disc permeameters,” Soil Sci. Soc. Am. J. 52 (5), 1205–1215 (1988).CrossRefGoogle Scholar
  10. 10.
    K. Tamoh and A. Maslouhi, “Mesures in situ par infiltrométrie des propriétés hydrodynamiques des sols de Mnasra (Maroc),” C. R. Geosci. 336 (6), 535–545 (2003).  https://doi.org/10.1016/j.crte.2003.04.001 CrossRefGoogle Scholar
  11. 11.
    L. Korenkova and M. Urik, “Infiltration variability in agricultural soil aggregates caused by air slaking,” Eurasian Soil Sci. 51, 428–433 (2018).  https://doi.org/10.1134/S1064229318040087 CrossRefGoogle Scholar
  12. 12.
    M. Hachimi and A. Maslouhi, “Hydrodynamic characterization using the disc infiltrometer of Loukkos soils (Morocco),” J. Mat. Environ. Sci. 7 (9), 3300–3312 (2016).Google Scholar
  13. 13.
    M. Th. van Genuchten, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils,” Soil Sci. Soc. Am. J. 44 (5), 892–898 (1980).  https://doi.org/10.2136/sssaj1980.03615995004400 CrossRefGoogle Scholar
  14. 14.
    ORMVAL, Activity Report 2010 (Regional Office for Agricultural Development of Loukkos, Loukkos, 2010).Google Scholar
  15. 15.
    R. F. Carsel and R. S. Parrish, “Developing joint probability distributions of soil water retention characteristics,” Water Resour. Res. 24 (5), 755–769 (1988).  https://doi.org/10.1029/wr024i005p00755 CrossRefGoogle Scholar
  16. 16.
    R. H. Brooks and A. T. Corey, “Properties of porous media affecting fluid flow”, J. Irrig. Drainage Div. 92 (2), 61–90 (1966).Google Scholar
  17. 17.
    R. Haverkamp, P. J. Ross, K. R. J. Smettem, and J. Y. Parlange, “Three-dimensional analysis of infiltration from the disc infiltrometer. 2. Physically based infiltration equation”, Water Resour. Res. 30 (11), 2931–2935 (1994).  https://doi.org/10.1029/94wr01788 CrossRefGoogle Scholar
  18. 18.
    R. Haverkamp, J. Y. Parlange, R. Cuenca, P. J. Ross, and T. Steenhuis, “On the theory of scaling of the Vadose zone water flow equation,” in Scale Invariance and Scale Dependence in Hydrology (Cambridge University Press, Cambridge, 1997).Google Scholar
  19. 19.
    S. Haddout, M. Igouzal, and A. Maslouhi, “Analytical and numerical study of the salinity intrusion in the Sebou River estuary (Morocco)—effect of the ‘Super Blood Moon’ (total lunar eclipse) of 2015,” Hydrol. Earth Syst. Sci. 20 (9), 3923–3945 (2016).  https://doi.org/10.5194/hess-20-3923-2016 CrossRefGoogle Scholar
  20. 20.
    S. N. Gorbov, O. S. Bezuglova, K. N. Abrosimov, E. B. Skvortsova, S. S. Tagiverdiev, and I. V. Morozov, “Physical properties of soils in Rostov agglomeration,” Eurasian Soil Sci, 49, 898–907 (2016).  https://doi.org/10.1134/S106422931606003X CrossRefGoogle Scholar
  21. 21.
    S. V. Zatinatskii, A. M. Zeiliger, A. K. Guber, N. B. Khitrov, N. S. Nikitina, and V. F. Utkaeva, “Preferential water flows in meadow-chernozemic soil of the Saratov Transvolga region,” Eurasian Soil Sci. 40, 532–543 (2007).  https://doi.org/10.1134/S1064229307050080 CrossRefGoogle Scholar
  22. 22.
    T. Talsma and J. Y. Parlange, “One-dimensional vertical infiltration,” Soil Res. 10 (2), 143–150 (1972).CrossRefGoogle Scholar
  23. 23.
    V. V. Terleev, W. Mirschel, V. L. Badenko, and I. Y. Guseva, “An improved Mualem van Genuchten method and its verification using data on Beit Netofa clay,” Eurasian Soil Sci. 50 (4), 445–455 (2017).  https://doi.org/10.1134/s1064229317040135 CrossRefGoogle Scholar
  24. 24.
    IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Updated 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015). ISSN 0532-0488. http://www.fao.org/3/i3794en/ I3794en.pdf.Google Scholar
  25. 25.
    X. Xu, G. Kiely, and C. Lewis, “Estimation and analysis of soil hydraulic properties through infiltration experiments: comparison of BEST and DL fitting methods”, Soil Use Manage. 25 (4), 354–361 (2009).  https://doi.org/10.1111/j.1475-2743.2009.00218.x CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Interdisciplinary Laboratory for Natural Resources and Environment, Department of Physics, Faculty of Sciences, Ibn Tofail UniversityKenitraMorocco

Personalised recommendations