Eurasian Soil Science

, Volume 52, Issue 10, pp 1234–1243 | Cite as

Characterization of Bacterial and Fungal Communities in Soils under Different Farming Systems. The Cacao Plantation in Sulawesi Island—Indonesia

  • I. N. Suwastika
  • A. F. CruzEmail author
  • N. A. Pakawaru
  • W. Wijayanti
  • Muslimin
  • Z. Basri
  • Y. Ishizaki
  • T. Tanaka
  • N. Ono
  • S. Kanaya
  • T. Shiina


The cacao plantations in Sulawesi Island, Indonesia are responsible for a great part of the local economy; however, their soils still need to be deeply explored. Our study focused on evaluation of the microbial communities in cacao soils according to their location and applied management system. Four soil samples were taken from six cacao farms under two kinds of systems (conventional and organic). 16S and ITS rDNA amplicon sequencing analyses of soils were also performed to identify bacteria and fungi, respectively, whereby their relative abundance and diversity were determined. In general view, the bacterial and fungal communities were affected by management system at the local and general levels. Bacterial analyses indicated that the number of operational taxonomic units and bacterial diversity were higher under the organic system in Kulawi, Palolo, and Poso farms. The composition and biodiversity of fungi were clearly different between organic and conventional systems and between different places (coastal and inland). The effect of agricultural management was observed in each location individually and in general.


agricultural management amplicon sequencing location microbial diversity 



We would like to thank the cacao farmers in Sulawesi, Indonesia, for allowing us to sample in their areas. We would also like to thank the students at Tadulako University who assisted us with sampling and analysis. Finally, we are thankful to Dr. Geleta Dugassa Markaof Universidade Federal de Vicosa, Brasil, for the constructive comments of this manuscript. This project was supported by the bilateral cooperation program between JSPS (Japan) and DHGE (Indonesia), and another grant of International collaboration.

Supplementary material

11475_2019_1145_MOESM1_ESM.docx (36 kb)


  1. 1.
    A. F. Cruz, I. N. Suwastika, H. Sasaki, T. Uchiyama, N. A. Pakawaru, W. Wijayanti, Z. Basri, Y. Ishizaki, and T. Shiina, “Cacao plantations on Sulawesi Island, Indonesia: I—an agro-ecological analysis of conventional and organic farms,” Org. Agric. 9 (2), 225–234 (2019).CrossRefGoogle Scholar
  2. 2.
    A. H. C. van Bruggen, M. He, V. V. Zelenev, V. M. Semenov, A. M., Semenov, E. V. Semenova, T. V. Kuznetsova, A. K. Khozaeva, A. M. Kuznetsov, and M. V. Semenov, “Relationships between greenhouse gas emissions and cultivable bacterial populations in conventional, organic and long-term grass plots as affected by environmental variables and disturbances,” Soil Biol. Biochem. 114, 145–159 (2017).CrossRefGoogle Scholar
  3. 3.
    A. M. Semenov, I. A. Bubnov, V. M. Semenov, E. V. Semenova, V. V. Zelenev, and N. A. Semenova, “Daily dynamics of bacterial numbers, CO2 emissions from soil and relationships between their wavelike fluctuations and succession of the microbial community,” Eurasian Soil Sci. 46, 869–884 (2013).CrossRefGoogle Scholar
  4. 4.
    A. Orgiazzi, V. Bianciotto, P. Bonfante, S. Daghino, S. Ghignone, A. Lazzari, E. Lumini, A. Mello, C. Napoli, S. Perotto, A. Vizzini, S. Bagella, C. Murat, and M. Girlanda, “454 pyrosequencing analysis of fungal assemblages from geographically distant, disparate soils reveals spatial patterning and a core mycobiome,” Diversity 5, 73–98 (2013).CrossRefGoogle Scholar
  5. 5.
    C. Luo, D. Tsementzi, N. Kyrpides, T. Read, K. T. Konstantinidis, C. Luo, D. Tsementzi, N. Kyrpides, T. Read, and K. Konstantinidis, “Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample,” PLoS One 7, e30087 (2012).CrossRefGoogle Scholar
  6. 6.
    C. Will, A. Thurmer, A. Wollherr, H. Nacke, N. Herold, M. Schrumpf, J. Gutknecht, T. Wubet, F. Buscot, and R. Daniel, “Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes,” Appl. Environ. Microbiol. 76, 6751–6759 (2010).CrossRefGoogle Scholar
  7. 7.
    D. N. Chavarria, C. Pérez-Brandan, D. L. Serri, J. M. Meriles, S. B. Restovich, A. E. Andriulo, L. Jacquelin, and S. Vargas-Gil, “Response of soil microbial communities to agroecological versus conventional systems of extensive agriculture,” Agric. Ecosyst. Environ. 264, 1–8 (2018).CrossRefGoogle Scholar
  8. 8.
    D. Thakuria, O. Schmidt, M. Mac Siúrtáin, D. Egan, and F. M. Doohan, “Importance of (DNA) quality in comparative soil microbial community structure analyses,” Soil Biol. Biochem. 40, 1390–1403 (2008).CrossRefGoogle Scholar
  9. 9.
    FAO, Food Agriculture Organization, GeoNetwork. Scholar
  10. 10.
    G. Rastogi, J. J. Tech, G. L. Coaker, and J. H. J. Leveau, “A PCR-based toolbox for the culture-independent quantification of total bacterial abundances in plant environments,” J. Microbiol. Methods 83, 127–132 (2010).CrossRefGoogle Scholar
  11. 11.
    H. Wasserstrom, S. Kublik, R. Wasserstrom, S. Schulz, M. Schloter, and Y. Steinberger, “Bacterial community composition in costal dunes of the Mediterranean along a gradient from the sea shore to the inland,” Sci. Rep. 7, 40266 (2017).CrossRefGoogle Scholar
  12. 12.
    I. Douterelo, J. B. Boxall, P. Deines, R. Sekar, K. E. Fish, and C. A. Biggs, “Methodological approaches for studying the microbial ecology of drinking water distribution systems,” Water Res. 65, 134–156 (2014).CrossRefGoogle Scholar
  13. 13.
    I. Nabhani, A. Daryanto, M. Yassin, and A. Rifin, “Can Indonesia cocoa farmers get benefit on global value chain inclusion?” Asian Soc. Sci. 11, 288–294 (2015).CrossRefGoogle Scholar
  14. 14.
    J. Cong, Y. Yang, X. Liu, H. Lu, X. Liu, J. Zhou, D. Li, H. Yin, J. Ding, and Y. Zhang, “Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession,” Sci. Rep. 5, 10007 (2015).CrossRefGoogle Scholar
  15. 15.
    J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Pena, J. K. Goodrich, and J. I. Gordon, “QIIME allows analysis of high-throughput community sequencing data,” Nat Methods 7 (5), 335–336 (2010).CrossRefGoogle Scholar
  16. 16.
    J. Sylla, B. W. Alsanius, E. Kruger, A. Reineke, S. Strohmeier, and W. Wohanka, “Leaf microbiota of strawberries as affected by biological control agents,” Phytopathology 103, 1001–1011 (2013).CrossRefGoogle Scholar
  17. 17.
    K. Xue, L. Wu, Y. Deng, Z. He, J. van Nostrand, P. G. Robertson, T. M. Schmidt, and J. Zhou, “Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands,” Appl. Environ. Microbiol. 79, 1284–1292 (2013).CrossRefGoogle Scholar
  18. 18.
    L. B. Martínez-García, G. Korthals, L. Brussaard, H. B. Jørgensen, and G. B. De Deyn, “Organic management and cover crop species steer soil microbial community structure and functionality along with soil organic matter properties,” Agric. Ecosyst. Environ. 263, 7–17 (2018).CrossRefGoogle Scholar
  19. 19.
    L. M. H. Kilowasid, T. S. Syamsudin, E. Sulystiawati, and F. X. Susilo, “Structure of soil food web in smallholder cocoa plantation, South Konawe district, Southeast Sulawesi, Indonesia,” Agrivita, J. Agric. Sci. 36, 33–47 (2014).Google Scholar
  20. 20.
    M. Buée, M. Reich, C. Murat, E. Morin, R. H. Nilsson, S. Uroz, and F. Martin, “Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity,” New Phytol. 184, 449–456 (2009).CrossRefGoogle Scholar
  21. 21.
    M. Hartmann, B. Frey, J. Mayer, P. Mader, and F. Widmer, “Distinct soil microbial diversity under long-term organic and conventional farming,” ISME J. 9, 1177–1194 (2015).CrossRefGoogle Scholar
  22. 22.
    M. He, W. Ma, V. V. Zelenev, A. K. Khodzaeva, A. M. Kuznetsov, A. M. Semenov, V. M. Semenov, W. Blok, and A. H. C. van Bruggen, “Short-term dynamics of greenhouse gas emissions and cultivable bacterial populations in response to induced and natural disturbances in organically and conventionally managed soils,” Appl. Soil Ecol. 119, 294–306 (2017).CrossRefGoogle Scholar
  23. 23.
    M. Oudah, and A. Henschel, “Taxonomy-aware feature engineering for microbiome classification,” BMC Bioinf. 19, 227 (2018).CrossRefGoogle Scholar
  24. 24.
    M. V. Semenov, T. I. Chernov, A. K. Tkhakakhova, A. D. Zhelezova, E. A. Ivanova, T. V. Kolganova, and O. V. Kutovaya, “Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century,” Appl. Soil Ecol. 127, 8–18 (2018).CrossRefGoogle Scholar
  25. 25.
    M. S. Strickland and J. Rousk, “Considering fungal:bacterial dominance in soils – Methods, controls, and ecosystem implications,” Soil Biol. Biochem. 42, 1385–1395 (2010).CrossRefGoogle Scholar
  26. 26.
    R. Daniel, “The metagenomics of soil,” Nat. Rev. Mic-ro. 3, 470–478 (2005).CrossRefGoogle Scholar
  27. 27.
    S. Dequiedt, N. P. A. Saby, M. Lelievre, C. Jolivet, J. Thioulouse, B. Toutain, D. Arrouays, A. Bispo, P. Lemanceau, and L. Ranjard, “Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management,” Global Ecol. Biogeogr. 20, 641 (2011).CrossRefGoogle Scholar
  28. 28.
    S. J. Kemmitt, D. Wright, K. W. T. Goulding, and D. L. Jones, “pH regulation of carbon and nitrogen dynamics in two agricultural soils,” Soil Biol. Biochem. 38, 898–911 (2006).CrossRefGoogle Scholar
  29. 29.
    S. V Angiuoli, M. Matalka, A. Gussman, K. Galens, M. Vangala, D. R. Riley, C. Arze, J. R. White, O. White, and W. F. Fricke, “CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing,” BMC Bioinf. 12, 356 (2011).CrossRefGoogle Scholar
  30. 30.
    S. Yoshitake and T. Nakatsubo, “Changes in soil microbial biomass and community composition along vegetation zonation in a coastal sand dune,” Soil Res. 46, 390–396 (2008).CrossRefGoogle Scholar
  31. 31.
    T. I. Chernov, A. K. Tkhakakhova, E. A. Ivanova, O. V. Kutovaya, and V. I. Turusov, “Seasonal dynamics of the microbiome of chernozems of the long-term agrochemical experiment in Kamennaya Steppe,” Eurasian Soil Sci. 48, 1349–1353 (2015).CrossRefGoogle Scholar
  32. 32.
    V. O. Biederbeck, C. A. Campbell, V. Rasiah, R. P. Zentner, and G. Wen, “Soil quality attributes as influenced by annual legumes used as green manure,” Soil Biol. Biochem. 30, 1177–1185 (1998).CrossRefGoogle Scholar
  33. 33.
    V. O. Biederbeck, R. P. Zentner, and C. A. Campbell, “Soil microbial populations and activities as influenced by legume green fallow in a semiarid climate,” Soil Biol. Biochem. 37, 1775–1784 (2005).CrossRefGoogle Scholar
  34. 34.
    W. Wang, H. Wang, Y. Feng, L. Wang, X. Xiao, Y. Xi, X. Luo, R. Sun, X. Ye, Y. Huang, Z. Zhang, and Z. Cui, “Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River,” Sci. Rep. 6, 35046 (2016).CrossRefGoogle Scholar
  35. 35.
    X. Luo, X. Fu, Y. Yang, P. Cai, S. Peng, W. Chen, and Q. Huang, “Microbial communities play important roles in modulating paddy soil fertility,” Sci. Rep. 6, 20326 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. N. Suwastika
    • 1
  • A. F. Cruz
    • 2
    Email author
  • N. A. Pakawaru
    • 1
  • W. Wijayanti
    • 3
  • Muslimin
    • 3
  • Z. Basri
    • 4
  • Y. Ishizaki
    • 2
  • T. Tanaka
    • 5
  • N. Ono
    • 5
  • S. Kanaya
    • 5
  • T. Shiina
    • 2
  1. 1.Faculty of Sciences, Tadulako UniversityPaluIndonesia
  2. 2.Kyoto Prefectural University, Graduate School of Life and Environmental SciencesKyotoJapan
  3. 3.Faculty of Forestery, Tadulako UniversityPaluIndonesia
  4. 4.Faculty of Agriculture, Tadulako UniversityPaluIndonesia
  5. 5.Nara Institute of Science and Technology, Division of Information ScienceNaraJapan

Personalised recommendations