Eurasian Soil Science

, Volume 52, Issue 10, pp 1306–1309 | Cite as

Erodibility of a Model Soil in a Wide Range of Water Flow Velocities

  • G. A. LarionovEmail author
  • A. V. Gorobets
  • N. G. Dobrovolskaya
  • Z. P. Kiryukhina
  • S. F. Krasnov
  • L. F. Litvin


It has been experimentally shown that there are two ranges of water flow velocities, at which the erodibility of a monofractional soil (of aggregates 1–2 mm) sharply differs. In the low-velocity range, the erodibility varies from 171.53 to 3.17 m–2 s2 at an increase in the soil density from 1.2 to 1.5 g/cm3. In the range of high velocities, it varies from 36.88 to 0.88 m–2 s2. The simultaneous solution of equations for the two velocity ranges enables us to obtain the boundary values of the flow velocity. Above them, other erodibility values should be taken into account at calculations. The boundary velocities for the model soil are within 1.6–1.7 m/s. This is explained by the fact that at a slow flow, water removes aggregates, which have lost the contact with the main soil as a result of its peptization by water. At high-velocity water flow, aggregates are detached under the effect of hydrodynamic forces.


: erosion intensity boundary flow velocity monofractional soil interaggregate bonds wedging impact of film moisture leached chernozem (Luvic Chernozem (Pachic)) 



This work was performed according to the Research Plan (State Task) of the Makkaveev Research Laboratory of Soil Erosion and Fluvial Processes (development of methods and instruments) and was supported by the Russian Foundation for Basic Research (project no. 16-05-00474, experiments and analysis of data).


  1. 1.
    Geography of Gully Erosion, Ed. by E. F. Zorina (Moscow State Univ., Moscow, 2006) [in Russian].Google Scholar
  2. 2.
    B. V. Deryagin, N. V. Churaev, and V. M. Muller, Surface Forces (Nauka, Moscow, 1985) [in Russian].Google Scholar
  3. 3.
    M. S. Kuznetsov, Soil Loss Tolerance (Moscow State Univ., Moscow, 1981) [in Russian].Google Scholar
  4. 4.
    G. A. Larionov, O. G. Bushueva, N. G. Dobrovol’skaya, Z. P. Kiryukhina, S. F. Krasnov, L. F. Litvin, R. R. Murakaev, “Determination of the hydrophysical parameters of soil in an erosion model,” Eurasian Soil Sci. 43, 453–458 (2010).CrossRefGoogle Scholar
  5. 5.
    G. A. Larionov, O. G. Bushueva, N. G. Dobrovol’skaya, Z. P. Kiryukhina, and L. F. Litvin, “Erodibility of model soils with different densities,” Eurasian Soil Sci. 44, 914–918 (2011).CrossRefGoogle Scholar
  6. 6.
    G. A. Larionov, O. G. Bushueva, N. G. Dobrovol’skaya, Z. P. Kiryukhina, S. F. Krasnov, and L. F. Litvin, “Effect of the water temperature and soil moisture on the erodibility of chernozem samples: a model experiment,” Eurasian Soil Sci. 47, 734–740 (2014). CrossRefGoogle Scholar
  7. 7.
    G. A. Larionov, O. G. Bushueva, N. G. Dobrovol’skaya, Z. P. Kiryukhina, L. F. Litvin, and S. F. Krasnov, “Assessing the contribution of nonhydraulic forces to the destruction of bonds between soil particles during water erosion,” Eurasian Soil Sci. 49, 546–550 (2016). CrossRefGoogle Scholar
  8. 8.
    G. A. Larionov, O. G. Bushueva, A. V. Gorobets, N. G. Dobrovolskaya, Z. P. Kiryukhina, S. F. Krasnov, L. F. Litvin, I. A. Maksimova, and I. I. Sudnitsyn, “Experimental study of factors affecting soil erodibility,” Eurasian Soil Sci. 51, 336–344 (2018). CrossRefGoogle Scholar
  9. 9.
    G. A. Larionov, N. G. Dobrovol’skaya, Z. P. Kiryukhina, S. F. Krasnov, L. F. Litvin, A. V. Gorobets, and I. I. Sudnitsyn, “Effect of soil density, tensile strength, and water infiltration on the rupture rate of interaggregate bonds,” Eurasian Soil Sci. 50, 335–340 (2017). CrossRefGoogle Scholar
  10. 10.
    G. A. Larionov and S. F. Krasnov, “Probabilistic model of soil and cohesive ground erosion,” Eurasian Soil Sci. 33, 205–211 (2000).Google Scholar
  11. 11.
    V. I. Osipov, “Physicochemical theory of effective stress in soils,” Gruntovedenie, No. 2, 3–34 (2013) [in Russian].Google Scholar
  12. 12.
    E. V. Shein, Lecturers on Soil Physics (Moscow State Univ., Moscow, 2005) [in Russian].Google Scholar
  13. 13.
    E. V. Shein and E. Yu. Milanovskii, “The role of organic matter in the formation and stability of soil aggregates,” Eurasian Soil Sci. 36, 51–58 (2003).Google Scholar
  14. 14.
    W. M. Edwards and L. B. Owens, “Large storm effects on total soil erosion,” J. Soil Water Conserv. 46 (1), 75–78 (1991).Google Scholar
  15. 15.
    M. A. Nearing, J. M. Bradford, and S. C. Parker, “Soil detachment by shallow flow at low slopes,” Soil Sci. Soc. Am. J. 55 (2), 339–344 (1991).CrossRefGoogle Scholar
  16. 16.
    M. A. Nearing, S. C. Parker, J. M. Bradford, and W. J. Elliot, “Tensile strength of thirty-three saturated repacked soils,” Soil Sci. Soc. Am. J. 55 (6), 1546–1551 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. A. Larionov
    • 1
    Email author
  • A. V. Gorobets
    • 1
  • N. G. Dobrovolskaya
    • 1
  • Z. P. Kiryukhina
    • 1
  • S. F. Krasnov
    • 1
  • L. F. Litvin
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations