Skip to main content
Log in

Characteristics of the Microarthropod Communities in Postagrogenic and Tundra Soils of the European Northeast of Russia

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Microarthropod communities (Oribatida, Mesostigmata, and Collembolans) in postagrogenic and tundra soils of the European Northeast of Russia have been characterized. In the postagrogenic soils, developed in places of former cultivation of perennial and annual crops, Collembolans predominate among microarthropods, while Oribatid mites predominate in the tundra soils. The population density of Mesostigmata has not been subjected to significant changes. In the studied sites, 58 species of Collembolans have been identified, including 33 species in postagrogenic soils and 46 species in tundra soils. A comparison of the species composition of springtails attested to significant differences in the structure of the complexes of dominant species, though no strongly specialized fauna has been found in the postagrogenic soils. No definite relationships between particular soil properties and population densities of different groups of microarthropods have been found, though these groups are definitely differentiated depending on genetic types of studied soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. M. M. Aleinikova and E. F. Martynova, “Landscape-ecological review of fauna of soil springtails (Collembola) in central Volga region,” Pedobiologia 6 (1), 35–64 (1966).

    Google Scholar 

  2. V. S. Andrievskii, M. V. Yakutin, and A. I. Shepelev, “Transformation of the zoo-microbial complex during natural evolution of flood-plain soils in the taiga zone of West Siberia,” Evraziatskii Entomol. Zh., No. 12 (5), 425–430 (2013).

  3. M. S. Gilyarov, Zoological Diagnostics of Soils (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  4. M. S. Gilyarov, Biogeocenology and Agrocenology (Pushchino, 1980) [in Russian].

    Google Scholar 

  5. G. Yu. Kapin, “Distribution of collembolans in non-fertilizers and fertilized arable soddy-podzolic soil,” in Fauna and Ecology of Springtails (Collembola) (Nauka, Moscow, 1984), pp. 179–186.

    Google Scholar 

  6. V. A. Kovaleva, S. V. Deneva, and A. N. Panyukov, “Microbiological parameters of soils in post-agrogenic biocenoses in tundra zone,” Vestn. Inst. Biol., Komi Nauchn. Tsentra, Ural. Otd., Ross. Akad. Nauk, No. 4 (198), 2–9 (2016).

    Google Scholar 

  7. V. A. Kovaleva, F. M. Khabibulina, I. B. Archegova, and A. N. Panyukov, “Characteristics of biota of post-agrogenic ecosystem in tundra zone,” Izv. Komi Nauchn. Tsentra, Ural. Otd., Ross. Akad. Nauk, No. 3 (19), 70–74 (2014).

    Google Scholar 

  8. V. B. Kolesnikov, “Orbatids as the indicators in monitoring of less used agricultural lands of Voronezh oblast,” Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk 12 (1), 1133–1138 (2010).

    Google Scholar 

  9. D. A. Krivolyutskii, A. A. Kazadaev, and A. V. Ponomarenko, “Impact of economic human activities on the complexes of Oribatid mites,” Vestn. Zool., No. 6, 7–12 (1977).

  10. V. D. Leonov, Candidate’s Dissertation in Biology (Moscow, 2016).

  11. S. Yu. Mironov, “Springtail community (Hexapoda, Collembola) in arable chernozems of Kursk oblast,” Entomol. Rev. 86, S147–S151 (2006).

    Article  Google Scholar 

  12. A. B. Novakovsky and A. N. Panyukov, “Analysis of successional dynamics of a sown meadow using Ramenskii–Grime’s system of ecological strategies,” Russ. J. Ecol. 49, 119–127 (2018).

    Article  Google Scholar 

  13. D. S. Orlov, Soil Humic Acids and General Theory of Humification (Moscow State Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  14. A. N. Panyukov, “Annotinous agrophytocenosis in tundra zone (creation and transformation), Agrar. Nauka Evro-Severo-Vost., No. 4 (15), 39–42 (2009).

  15. A. D. Petrova-Nikitina, R. O. Butovskii, and M. A. Minor, “Impact of automobile road on the complex of microarthropods in agrocenosis. Part 1. The structure of complex,” Agrokhimiya, No. 10, 116–125 (1994).

    Google Scholar 

  16. Post-Technogenic Northern Territories (Nauka, St. Petersburg, 2002) [in Russian].

  17. I. M. Ryzhova, A. A. Erokhova, and M. A. Podvezennaya, “Dynamics of carbon reserves in post-agrogenic ecosystems as a result of afforestation in Kostroma oblast,” Lesovedenie, No. 4, 307–317 (2015).

    Google Scholar 

  18. S. K. Stebaeva, “Life forms of the springtails (Collembola),” Zool. Zh. 49 (10), 1437–1455 (1970).

    Google Scholar 

  19. B. R. Striganova, “The influence of the edaphic factor on the development of the fauna in agrocenoses,” Zool. Zh. 82 (2), 178–187 (2003).

    Google Scholar 

  20. A. A. Taskaeva, E. M. Lapteva, and S. V. Degteva, “Dynamics of springtails complex in alluvial soils during vegetation succession in floodplain landscapes of taiga zone,” Vestn. Pomorsk. Univ., Ser. Estestv. Tochn. Nauki, No. 2 (8), 36–47 (2005).

    Google Scholar 

  21. V. M. Telesnina, I. E. Vaganov, E. Yu. Klimovich, and T. A. Chalaya, “The distinctive features of biological turnover in postagrogenic ecosystems of the south taiga and their effects on the chemical properties and biological activities of soils,” Moscow Univ. Soil Sci. Bull. 68, 90–98 (2013).

    Article  Google Scholar 

  22. V. I. Titova, I. O. Mityanin, A. A. Vetchinnikov, and I. V. Vershinina, “Possible use of crop grasses for conservation of degraded arable lands and Recultivation of anthropogenically disturbed soils,” Agrokhim. Vestn., No. 2, 24–26 (2011).

  23. I. S. Khantimer, “Meadowning as the basis for fodder cultivation for diary farming in tundra,” in Communities of the Extreme North and a Man (Nauka, Moscow, 1985), pp. 115–133.

    Google Scholar 

  24. I. S. Khantimer, Agriculture in Tundra (Nauka, Leningrad, 1974) [in Russian].

    Google Scholar 

  25. N. M. Chernova, Ecological Successions during Decomposition of Plant Remains (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  26. N. M. Chernova, “Complexes of microarthropods of arable lands of Moscow region,” in Soil Invertebrates of Moscow Region (Nauka, Moscow, 1982), pp. 107–118.

    Google Scholar 

  27. A. D. Shtirts, G. A. Zadorozhnaya, O. N. Kunakh, and A. V. Zhukov, “Spatial distribution of community of Orbatid mites (Acari: Oribatida) in soil in the steppe zone of Ukraine,” Izv. Khar’k. Entomol. O-va 21 (1), 49–60 (2013).

    Google Scholar 

  28. Ecological Principles of the Productivity Control of Agrophytocenosises of East European Tundra (Nauka, Leningrad, 1991) [in Russian].

  29. R. D. Bardgett and R. Cook, “Functional aspects of soil animal diversity in agricultural grasslands,” Appl. Soil Ecol. 10, 263–276 (1998).

    Article  Google Scholar 

  30. V. Behan-Pelletier, “Oribatid mite biodiversity in agroecosystems: role for bioindication,” Agric. Ecosyst. Environ. 74, 411–423 (1999).

    Article  Google Scholar 

  31. L. Brussaard, P. C. de Ruiter, and G. G. Brown, “Soil biodiversity for agricultural sustainability,” Agric., Ecosyst. Environ. 121, 233–244 (2007). https://doi.org/10.1016/j.agee.2006.12.013

    Article  Google Scholar 

  32. D. Cluzeau, M. Guernion, R. Chaussod, F. Martin-Laurent, C. Villenave, J. Cortet, N. Ruiz-Camacho, C. Pernin, T. Mateille, L. Philippot, A. Bellido, L. Rougé, D. Arrouays, A. Bispo, and G. Pérès, “Integration of biodiversity in soil quality monitoring: baselines for microbial and soil fauna parameters for different land-use types,” Eur. J. Soil Biol. 49, 63–72 (2012). https://doi.org/10.1016/j.ejsobi.2011.11.003

    Article  Google Scholar 

  33. S. J. Coulson, A. Fjellberg, E. N. Melekhina, A. A. Taskaeva, N. V. Lebedeva, O. A. Belkina, S. Seniczak, A. Seniczak, and D. J. Gwiazdowicz, “Microarthropod communities of industrially disturbed or imported soils in the High Arctic; the abandoned coal mining town of Pyramiden, Svalbard,” Biol. Conserv. 24, 1671–1690 (2015). https://doi.org/10.1007/s10531-015-0885-9

    Google Scholar 

  34. T. D’Hose, L. Molendijk, L. van Vooren, W. van den Berg, H. Hoek, W. Runia, F. van Evert, H. ten Berge, H. Spiegel, T. Sanden, C. Grignani, and G. Ruysschaert, “Responses of soil biota to non-inversion tillage and organic amendments: An analysis on European multiyear field experiments,” Pedobiologia 66, 18–28 (2018). https://doi.org/10.1016/j.pedobi.2017.12.003

    Article  Google Scholar 

  35. H.-D. Engelmann, “Zur Dominanzklassifizierung von Bodenarthropoden,” Pedobiologia 18, 378–380 (1978).

    Google Scholar 

  36. A. Fjellberg, The Collembola of Fennoscandia and Denmark, Part 1: Poduromorpha, Fauna Entomologica Scandinavica Series vol. 35 (Brill, Leiden, 1998).

  37. A. Fjellberg, The Collembola of Fennoscandia and Denmark, Part 2: Entomobryomorpha and Symphypleona, Fauna Entomologica Scandinavica Series vol. 42 (Brill, Leiden, 2007).

  38. S. Hågvar and G. Amrahamsen, “Colonization by Enchytraeidae, Collembola, and Acari in sterile soil samples with adjusted pH levels,” Oikos 34, 245–258 (1980).

    Article  Google Scholar 

  39. F. Hendrickx, J.-P. Maelfait, W. van Wingerden, O. Schweiger, M. Speelmans, S. Aviron, et al., “How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes,” J. Appl. Ecol. 44 (2), 340–351 (2007). https://doi.org/10.1111/j.1365-2664.2006.01270.x

    Article  Google Scholar 

  40. J. M. Holland, “The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence,” Agric. Ecosyst. Environ. 103, 1–25 (2004). https://doi.org/10.1016/j.agee.2003.12.018

    Article  Google Scholar 

  41. R. Holtkamp, P. Kardol, A. van der Wal, S. C. Dekker, W. H. van der Putten, and P. C. de Ruiter, “Soil food web structure during ecosystem development after land abandonment,” Appl. Soil Ecol. 39, 23–34 (2008). https://doi.org/10.1016/j.apsoil.2007.11.002

    Article  Google Scholar 

  42. T. D. Hooker and J. E. Compton, “Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment,” Ecol. Appl. 13 (2), 99–313 (2003). https://doi.org/10.1890/1051-0761(2003)013[0299:FECANA]2.0.CO;2

    Article  Google Scholar 

  43. L. Kovac, “Effects of soil type on collembolan communities in agroecosystems,” Acta Zool. Fenn. 195, 89–93 (1994).

    Google Scholar 

  44. A. V. Kurakov, M. A. Davydova, and B. A. Byzov, “Microarthropods as regulators of the communities of microscopic fungi and biological activity in the litter of a mixed forest,” Eurasian Soil Sci. 39, 838–847 (2006).

    Article  Google Scholar 

  45. T. Larsen, P. Schjonning, and J. Axelsen, “The impact of soil compaction on euedaphic Collembola,” Appl. Soil Ecol. 26, 273–281 (2004). https://doi.org/10.1016/j.apsoil.2003.12.006

    Article  Google Scholar 

  46. E. N. Melekhina, M. Y. Markarova, T. N. Shchemelinina, E. M. Anchugova, and V. A. Kanev, “Secondary successions of biota in oil-polluted peat soil upon different biological remediation methods,” Eurasian Soil Sci. 48, 643–653 (2015). https://doi.org/10.1134/S1064229315060071

    Article  Google Scholar 

  47. U. N. Nielsen, G. H. R. Osler, C. D. Campbell, D. F. R. P. Burslem, and R. van der Wal, “The influence of vegetation type, soil properties, and precipitation on the composition of soil mite and microbial communities at the landscape scale,” J. Biogeogr. 37, 1317–1328 (2010). https://doi.org/10.1111/j.1365-2699.2010.02281.x

    Article  Google Scholar 

  48. I. Olejniczak, P. Boniecki, A. Kaliszewicz, and N. Panteleeva, “The response of tundra springtails (Collembola, Hexapoda) to human activity on the Murman coast of the Kola Peninsula, Russia,” Polar Sci. 15, 99–103 (2018). https://doi.org/10.1016/j.polar.2017.12.005

    Article  Google Scholar 

  49. J. F. Ponge, S. Gillet, F. Dubs, E. Fedoroff, L. Haese, J. P. Sousa, and P. Lavelle, “Collembolan communities as bioindicators of land use intensification,” Soil Biol. Biochem. 35, 813–826 (2003). https://doi.org/10.1016/S0038-0717(03)00108-1

    Article  Google Scholar 

  50. M. Potapov, Synopses on Palaearctic Collembola, Part 3: Isotomidae (Senckenberg Museum of Natural History, Görlitz, 2001).

  51. A. A. Taskaeva, “Springtail (Collembola) assemblages in floodlands of the taiga zone of the Republic of Komi,” Entomol. Rev. 89 (8), 965–974 (2009).

    Article  Google Scholar 

  52. C. Thies and T. Tscharntke, “Landscape structure and biological control in Agroecosystems,” Science 285, 893–895 (1999). https://doi.org/10.1126/science.285.5429.893

    Article  Google Scholar 

  53. T. Tscharntke, A. M. Klein, A. Kruess, I. Steffan-Dewenter, and C. Thies, “Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management,” Ecol. Lett. 8, 857–874 (2005). https://doi.org/10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  54. C. van Capelle, S. Schrader, and J. Brunotte, “Tillage-induced changes in the functional diversity of soil biota—A review with a focus on German data,” Eur. J. Soil Biol. 50, 165–181 (2012). https://doi.org/10.1016/j.ejsobi.2012.02.005

    Article  Google Scholar 

  55. M. L. Vandegehuchte, U. Raschein, M. Schütz, D. J. Gwiazdowicz, and A. C. Risch, “Indirect short- and long-term effects of aboveground invertebrate and vertebrate herbivores on soil microarthropod communities,” PloS One 10 (3), e0118679 (2015). https://doi.org/10.1371/journal.pone.0118679

    Article  Google Scholar 

  56. N. M. van Straalen, “Evaluation of bioindicator systems derived from soil arthropod communities,” Appl. Soil Ecol. 9, 429–437 (1998).

    Article  Google Scholar 

  57. L. Vesterdal, E. Ritter, and P. Gundersen, “Change in soil organic carbon following afforestation of former arable land,” For. Ecol. Manage. 169, 137–147 (2002).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to the stuff of Ecoanalytical Laboratory, Institute of Biology, Komi Science Center, Ural Division, Russian Academy of Sciences for performing chemical analyses and to anonymous reader for valuable note on manuscript of this work.

Funding

This work was carried out within the framework of state-financed research of the Department of Animal Ecology Distribution, Systematics, and Spatial Arrangement of Fauna and Animal Population in Taiga and Tundra Landscapes and Ecosystems of the European Northeast of Russia, state registration АААА-А17-117112850235-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Taskaeva.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taskaeva, A.A., Mandrik, E.A., Konakova, T.N. et al. Characteristics of the Microarthropod Communities in Postagrogenic and Tundra Soils of the European Northeast of Russia. Eurasian Soil Sc. 52, 661–670 (2019). https://doi.org/10.1134/S1064229319060127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319060127

Keywords:

Navigation