Eurasian Soil Science

, Volume 51, Issue 12, pp 1440–1446 | Cite as

Changes in Soil Physical and Chemical Properties During the Process of Alpine Meadow Degradation along the Eastern Qinghai-Tibet Plateau

  • H. H. XieEmail author
  • Q. G. Wu
  • J. Y. HuEmail author
  • L. F. Yu
  • P. F. Bie
  • H. Wang
  • D. Z. Deng


Soil moisture, nutrients and environmental conditions have extremely vital effects on vegetation growth and microbial activities in terrestrial ecosystems. To study the changes of soil physical and chemical properties as affected by degradation along the eastern margin of the Tibetan Plateau, using the largest wetland in Ruoergai as the research sample for two consecutive years, we tested the soil bulk density, the soil moisture content, the pH value, the content of organic C, total N and total P of 0~20 cm and 20~40 cm in different degradation degree (light, moderate, serious and non-degraded alpine meadow). The results show that: (1) Degradation had profound effects on the soil physical properties and chemical properties. with the intensification of the alpine meadow degradation in the eastern margin of the Qinghai-Tibet Plateau, the soil organic carbon, total nitrogen, total phosphorus and soil water content decreased significantly but soil bulk density increased significantly. (2) the soil organic carbon, total nitrogen, total phosphorus contents and soil water content increased with the increase of soil depth, however, the soil bulk density show the opposite regular. (3) The correlation analysis indicated that there was an extremely significant positive correlation between soil organic carbon and total nitrogen, total phosphorus, soil water, and the correlation coefficients were 0.822, 0.907 and 0.885 respectively (P < 0.01). There was an extremely significant positive relationship between the pH and the soil bulk density (r = 0.488, p < 0.01), while a significant negative relationship between pH and soil water (r = –0.387, p < 0.05). Overall, these results suggested that soil degradation not only changed the soil physical properties but also affected the soil chemical properties indirectly. Protecting surface vegetation and reducing wind erosion could be a good way to curb degradation.


The Eastern Qinghai-Tibet Plateau Ruoergai wetland meadow degradation soil physical properties soil chemical properties change mechanism 



This work was supported by the National Natural Science Foundation of China (31170319), the Key Project of the Education Department of Sichuan Province (16ZA0322), the Project of Mianyang Normal University (07119713, QD2015B07 2015A01 and XYCXXM201710), Sichuan Science and Technology Program (2018JY0244), Key project of Sichuan Education Department (18ZA0266).


  1. 1.
    J. M. Bremner and M. A. Tabatabai, “Use of an ammonia electrode for determination of ammonium in Kjeldahl analysis of soils,” Commun. Soil Sci. Plant Anal. 3 (2), 159–165 (1972).CrossRefGoogle Scholar
  2. 2.
    X. Y. Bu, M. I. W. B. Mi, H. Xu, X. Y. Zhang, N. Mi, and Y. Y. Song, “Contents and ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in wetlands of Ningxia plain,” J. Zhejiang Univ., Agric. Life Sci. 42 (1), 107–118 (2016).Google Scholar
  3. 3.
    P. Dlamini, P. Chivenge, A. Manson, and V. Chaplot, “Land degradation impact on soil organic carbon and nitrogen stocks of sub-tropical humid grasslands in South Africa,” Geoderma 235–236 (4), 372–381 (2014).CrossRefGoogle Scholar
  4. 4.
    Q. Feng, K. N. Endo, and G. D. Cheng, “Soil carbon in desertified land in relation to site characteristics,” Geoderma 106 (1), 21–43 (2002).CrossRefGoogle Scholar
  5. 5.
    G. Goijberg-Rein and A. Aguilar-Santelises, “Soil pH and lime requirement,” in Análisis Químico para Evaluar la Fertilidad del Suelo, Ed. by A. S. Aguilar, J. D. Etchevers, and B. J. Castellanos (Sociedad Mexicana de la Ciencia del Suelo, México, 1987), pp. 17–44.Google Scholar
  6. 6.
    X. L. Gou, W. G. Tu, X. M. Luo, H. Xi, H. Fan, and S. Li, “Study on characteristics of Degradation Grassland in Northwest Sichuan Basin,” Acta Agrestia Sin. 24 (4), 768–775 (2016).Google Scholar
  7. 7.
    R. Giesler, T. Petersson, and P. Högberg, “Phosphorus limitation in boreal forests: effects of aluminum and iron accumulation in the humus layer,” Ecosystems 5 (3), 300–314 (2002).CrossRefGoogle Scholar
  8. 8.
    Q. He, H. Xi, and T. Wan, “Effects of different vegetation restoration patterns on soil physical and chemical properties of red grassland sandy grassland,” Sichuan Environ., No. 1, 35–40 (2017).Google Scholar
  9. 9.
    G. Hu, Z. Dong, J. Lu, and C. Yan, “The developmental trend and influencing factors of aeolian degradation in the Zoige Basin, eastern Qinghai–Tibet Plateau,” Aeolian Res. 19, 275–281 (2015).CrossRefGoogle Scholar
  10. 10.
    S. L. Jiang, Y. F. Hu, Q. Pu, X. Y. Shu, C. M. Yuan, and Q. Yu, “Changes in soil nitrogen characteristics during grassland degradation in Northwest Sichuan,” Acta Ecol. Sin. 36 (15), (2016).Google Scholar
  11. 11.
    Y. Q. Li, W. Shang, H. L. Zhao, X. Y. Zhao, S. K. Wang, and Q. U. Hao, “Effects of degradation process on soil properties and crop yield of farmland,” Ecol. Environ. Sci. 19 (4), 926–931 (2010).Google Scholar
  12. 12.
    B. M. Lex, K. G. Kees, W. V. D. H. Klaas, H. W. B. Arthur, P. V. V. Detlef, W. Jaap, C. R. Mariana, and S. Elke, “Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period,” Proc. Natl. Acad. Sci. U.S.A. 110 (52), 20882–20887 (2013).CrossRefGoogle Scholar
  13. 13.
    Z. P. Liu, M. A. Shao, and Y. Q. Wang, “Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China,” Geoderma 197–198 (3), 67–78 (2013).CrossRefGoogle Scholar
  14. 14.
    J. H. Li, S. M. Jiao, R. Q. Gao, and R. D. Bardgett, “Differential effects of legume species on the recovery of soil microbial communities, and carbon and nitrogen contents, in abandoned fields of the Loess Plateau, China,” Environ. Manage. 50 (6), 1193–1203 (2012).CrossRefGoogle Scholar
  15. 15.
    C. J. Li, X. W. Xu, Y. Q. Sun, Y. Z. Qiu, S. Y. Li, P. Gao, X. B. Zhong, J. Yan and G. F. Wang, “Chemical characteristics of C, N and P in leaves and soils of Three Desert Plants under different habitats,” Arid Zone Geogr. 37 (5), 996–1004 (2014).Google Scholar
  16. 16.
    J. Murphy and J. P. Riley, “A modified single solution method for the determination of phosphate in natural waters,” Anal. Chim. Acta 27, 31–36 (1962).CrossRefGoogle Scholar
  17. 17.
    J. L. Mora and R. Lázaro, “Seasonal changes in bulk density under semiarid patchy vegetation: the soil beats,” Geoderma 235–236, 30–38 (2014).CrossRefGoogle Scholar
  18. 18.
    D. W. Nelson, L. E. Sommers, and D. L. Sparks, “Total carbon, organic carbon, and organic matter,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Agronomy Series no. 9, Ed by A.L. Page (Soil Science Society of America, Madison, WI, 1996), pp. 961–1010.Google Scholar
  19. 19.
    L. Q. Nie, Q. Wu, B. Yao, F. Shan, and Q. B. Hu, “Leaf litter and soil carbon, nitrogen, and phosphorus stoichiometry of dominant plant species in the Poyang Lake wetland,” Acta Ecol. Sin. 36 (7), (2016).Google Scholar
  20. 20.
    A. Pang, C. Li, X. Wang, and J. Hu, “Land use/cover change in response to driving forces of Zoige County, China,” Proc. Environ. Sci. 2 (6), 1074–1082 (2010).CrossRefGoogle Scholar
  21. 21.
    C. Quilchano, T. Marañón, I. M. Pérez-Ramos, L. Noejovich, F. Valladares, and M. A. Zavala, “Patterns and ecological consequences of abiotic heterogeneity in managed cork oak forests of Southern Spain,” Ecol. Res. 23 (1), 127–139 (2008).CrossRefGoogle Scholar
  22. 22.
    Y. C. Rui, PhD Thesis (Griffith University, Brisbane, 2013).Google Scholar
  23. 23.
    Y. N. Sun, Q. Li, Y. K. Li, L. Lin, Y. G. Du, and G. M. Cao, “The effect of nitrogen and phosphorus applications on soil enzyme activities in Qinghai–Tibetan alpine meadows,” Acta Pratacult. Sin. 25 (2), 18–26 (2016).Google Scholar
  24. 24.
    W. S. Shen, X. Z. Cao, and F. Y. Shen, “Classification of land degradation in China,” J. Ecol. Rural Environ. 22 (4), 88–93 (2006).Google Scholar
  25. 25.
    X. Y. Shu, Y. F. Hu, S. L. Jiang, Q. Pu, C. M. Yuan, and J. J. Peng, “Influences of grassland desertification on soil particles composition and soil phosphorus and potassium nutrients in northwestern Sichuan,” J. Arid Land Resour. Environ. 29 (8), 173–179 (2015).Google Scholar
  26. 26.
    V. M. Semenov, B. M. Kogut, N. B. Zinyakova, N. P. Masyutenko, L. S. Malyukova, T. N. Lebedeva, and A. S. Tulina, “Biologically Active Organic Matter in Soils of European Russia,” Eurasian Soil Sci. 51, 434–447 (2018).CrossRefGoogle Scholar
  27. 27.
    J. Wang, J. Hu, and G. Z. Du, “Effects of nitrogen and phosphorus on the soil nematode community in Tibetan Plateau alpine meadows,” Acta Pratacult. Sin. 24 (12), 20–28 (2015).Google Scholar
  28. 28.
    J. Wang, R. L. Zhou, H. L. Zhao, and X. Y. Zhao, “Comparative study on the change of soil physical and chemical properties in the process of grassland degradation in Hulun Buir sandy land and Songnen sandy land,” Desert, No. 2, 309–314 (2011).Google Scholar
  29. 29.
    T. Wan, W. G. Tu, H. Xi, Y. D. Li, X. F. Tang, and Y. C. Yang, “Study on vegetation and soil characteristics of degradation grassland in Northwest Sichuan,” Acta Agrestia Sin. 21 (4), 650–657 (2013).Google Scholar
  30. 30.
    S. Xiang, R. Guo, N. Wu, and S. Sun, “Current status and future prospects of Zoige marsh in Eastern Qinghai–Tibet Plateau,” Ecol. Eng. 35 (4), 553–562 (2009).CrossRefGoogle Scholar
  31. 31.
    Y. Q. Xiong, P. F. Wu, H. Z. Zhang, L. W. Cui, and X. J. He, “Dynamics of soil water conservation during the degradation process of the Zoigê Alpine Wetland,” Acta Ecol. Sin. 31 (19), 5780–5788 (2011).Google Scholar
  32. 32.
    X. Xue, J. Guo, B. S. Han, Q. W. Sun, and L. C. Liu, “The effect of climate warming and permafrost thaw on degradation in the Qinghai-Tibetan Plateau,” Geomorphology 108 (3), 182–190 (2009).CrossRefGoogle Scholar
  33. 33.
    Y. Qing, F. Sun, Y. Li, W. Chen, and X. Li, “Analysis of soil carbon, nitrogen and phosphorus in degraded alpine wetland, Zoige, southwest China,” Acta Pratacult. Sin., No. 3, 38–47 (2015).Google Scholar
  34. 34.
    H. L. Zhao, R. Z. Zhou, Y. Z. Shu, and Y. Q. Li, “The change of soil organic carbon and total nitrogen in the degradation process of Horqin sandy land,” Ecol. J. 28 (3), 976–982 (2008).Google Scholar
  35. 35.
    H. L. Zhao, R. L. Zhou, T. H. Zhang, and X. Y. Zhao, “Effects of desertification on soil and crop growth properties in Horqin sandy cropland of Inner Mongolia, north China,” Soil Tillage Res. 87 (2), 175–185 (2006).CrossRefGoogle Scholar
  36. 36.
    J. C. Zang, X. Q. Tang, Y. X. Zhai, C. Su, and P. Pang, “Community structure of soil macrofauna in spring orchard of Linzhi, Tibet,” J. Northw. Agric. For. Univ., Nat. Sci., No. 7, 159–164, 172 (2016).Google Scholar
  37. 37.
    F. Zhang, B. Zhu, J. Zheng, Z. Xiong, F. Jiang, L. Han, T. Wang, and M. Wang, “Soil properties as indicators of degradation in an alpine meadow ecosystem of the Qinghai–Tibet Plateau, China,” Environ. Earth Sci. 70 (1), 249–258 (2013).CrossRefGoogle Scholar
  38. 38.
    Y. M. Zheng, “Study on the stoichiometric characteristics of soil-plant carbon, nitrogen and phosphorus in Poyang lake sand mountain,” Jiangxi Normal Univ., (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.College of Life Science and Biotechnology, Mianyang Normal UniversityMianyang, 621000 China
  2. 2.Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal UniversityMianyangChina
  3. 3.Sichuan Academy of ForestryChengduChina

Personalised recommendations