Eurasian Soil Science

, Volume 51, Issue 12, pp 1487–1496 | Cite as

Submicroscopy of Aggregates of Luvic Phaeozems under Different Land Uses in the Southeast of the Buenos Aires Province, Argentina

  • Maria Fernanda AlvarezEmail author
  • Margarita Luisa Osterrieth


Soil aggregates are key elements of soil structure that play an important role in several soil processes. One of the major factors that affect soil structure are the anthropogenic activities. Such modifications can be studied by different scales of analysis, macro, meso and microscale; and measured through different soil properties. The aim of our work is to perform description at submicroscopic scale of the soil aggregates matrices of Luvic Phaeozems affected by the different uses in the southeastern part of Buenos Aires, Argentina. The descriptions were made taking into account: (a) characteristics of aggregates matrix, (b) elemental composition of matrix and (c) organics components (plant residues, other carbon components) and microbiogical components. In natural and forested soils, the content of organic carbon in the aggregate matrices is higher, while in cultivated soils there is a decrease, which results in a decrease in their structural stability. The observations under MEB and the EDAXs have contributed to defining the morphological characteristics of the aggregate matrices from granular porous organic ones in non-tilled soils to compact ones in cultivated plots.


soil structure aggregates land use 



Project ANPCyT (BID-PICT no. 2013-1583).


  1. 1.
    M. F. Alvarez, M, Osterrieth, V. Bernava Laborde, and L. Montti, “Estabilidad, morfología y rugosidad de agregados de Argiudoles típicos sometidos a distintos usos: su rol como indicadores de calidad física de suelos, Buenos Aires, Argentina,” Cienc. Suelo 26 (2), 115–129 (2008).Google Scholar
  2. 2.
    M. F. Alvarez, M. Osterrieth, A. Becker, B. Parra, J. L. del Río, and M. P. Cantú, “Estudio comparativo de la morfología de agregados, su rol como indicador en la calidad de Molisoles de la Región Pampeana,” in Resúmenes XXI Congreso Argentino de la Ciencia del Suelo. San Luis, Argentina. Mayo 13–16, 2008 (Asociación Argentina de la Ciencia del Suelo, Buenos Aires, 2008), p. 65.Google Scholar
  3. 3.
    M. F. Alvarez, PhD Thesis (Universidad Nacional de Mar del Plata, Buenos Aires, 2009).Google Scholar
  4. 4.
    M. F. Alvarez, M. Osterrieth, and J. L. del Río, “Organic matter fractionation in aggregates of typical Argiudolls in southeastern Buenos Aires and its relation to different soil uses: a preliminary study,” Environ. Earth Sci. 65 (2), 505–515 (2011).CrossRefGoogle Scholar
  5. 5.
    M. F. Alvarez, M. Osterrieth, and J. L. del Río, “Changes on aggregates morphology and roughness of induced by different uses of Typical Argiudolls, Buenos Aires province, Argentina,” Soil Tillage Res. 119, 38–49 (2012).CrossRefGoogle Scholar
  6. 6.
    M. F. Alvarez, M. Osterrieth, and M. Cooper, “Cambios de porosidad inducidos por la actividad hortícola en Argiudoles típicos de agroecosistemas del sudeste bonaerense y su relación con el hábitat de la mesofauna. Un estudio preliminar,” in Resúmenes III Congreso de Ecología y Biología de Suelos (Río Cuarto, Córdoba, 2013), p. 39.Google Scholar
  7. 7.
    M. F. Alvarez, M. Osterrieth, and M. Cooper, “Changes in the porosity induced by tillage in typical Argiudolls of southeastern Buenos Aires Province, Argentina, and its relationship with the living space of the mesofauna: a preliminary study,” Environ. Earth Sci. 77, 134 (2018).CrossRefGoogle Scholar
  8. 8.
    K. Ananyeva, W. Wang, A. J. M. Smucker, M. L. Rivers, and A. N. Kravchenko, “Can intra-aggregate pore structures affect the aggregate’s effectiveness in protecting carbon?” Soil Biol. Biochem. 57, 868–875 (2013).CrossRefGoogle Scholar
  9. 9.
    L. D. Baver y W. R. Gardner, Física de Suelos (Limusa, 1973), pp. 196–204.Google Scholar
  10. 10.
    M. H. Beare, S. Hu, D. C. Coleman, and P. F. Hendrix, “Influences of mycelial on soil aggregation and organic matter storage in conventional and no-tillage soils,” Appl. Soil Ecol. 5, 211–219 (1997).CrossRefGoogle Scholar
  11. 11.
    E. B. A. Bisdom and J. Ducloux, Submicroscopic Studies of Soils, Developments in Soil Science vol. 12 (Elsevier, Amsterdam, 1983), p. 356.Google Scholar
  12. 12.
    C. B. Blackwood, C. J. Dell, A. L. J. M. Smucker, and E. A. Paul, “Eubacterial communities in different soil macroaggregate environments and cropping systems,” Soil Biol. Biochem. 38 (4), 720–728 (2006).CrossRefGoogle Scholar
  13. 13.
    B. A. Bonel, H. J. M. Morrás, and V. Bisaro, “Modificaciones de la microestructura y la materia orgánica en un Argiudol bajo distintas condiciones de cultivo y conservación,” Cienc. Suelo 23 (1), 1–12 (2005).Google Scholar
  14. 14.
    N. L. Borrelli, M. F. Alvarez, M. Osterrieth, and J. Marcovecchio, “Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in Typical Argiudolls of the Pampean Plain, Argentina-A preliminary study,” J. Soil Sediments 10, 983–994 (2010).CrossRefGoogle Scholar
  15. 15.
    C. J. Bronick and R. Lal, “Soil structure and management: a review,” Geoderma 124 (1–2), 3–22 (2005).CrossRefGoogle Scholar
  16. 16.
    S. Cheng, R. Bryant, S. H. Doerr, P. Rhodri Williams, and C. J. Wright, “Application of atomic force microscopy to the study of natural and model soil particles,” J. Microsc. 231, 384–394 (2008).CrossRefGoogle Scholar
  17. 17.
    C. Chenu and A. F. Plante, “Clay-sizedorgano-mineralcomplexes in acultivation chronosequence: revisiting the conceptofthe‘primary organo-mineralcomplex,” Eur. J. Soil Sci. 57, 596–607 (2006).CrossRefGoogle Scholar
  18. 18.
    J. L. Del Río, M. J. Bó, M. Osterrieth, A. López de Armentia, J. L. Conchi, M. F. Alvarez, J. Martínez Arca, V. Bernava, M. Camino, M. Fernández Honaine, and N. Borrelli, “Estudio de caso Buenos Aires: Cuenca del Arroyo y Laguna de los Padres,” in Evaluación de la Sustentabilidad Ambiental en Sistemas Agropecuarios, Ed. by M. P. Cantú, A. Becker, and J. C. Bedano (National University of Río Cuarto, Córdoba, 2008), pp. 147–163. ISBN 978-987-1003-58-7.Google Scholar
  19. 19.
    J. W. Doran and T. B. Parkin, “Defining and assessing soil quality,” in Defining Soil Quality for a Sustainable Environment, SSSA Special Publication vol. 35, Ed. by J. W. Doran, D. C. Coleman, D. F. Bezdicek, and B. A. Stewart (Soil Science Society of America, Madison, WI, 1994).Google Scholar
  20. 20.
    E. Elissondo, J. L. Costa, E. Suero, L. P. Fabrizzi, and F. Garcia, “Evaluación de algunas propiedades físicas del suelo luego de la introducción de labranzas verticales en un suelo bajo siembra directa,” Cienc. Suelo 19 (1), 11 (2001).Google Scholar
  21. 21.
    R. H. Ellerbrockand and H. H. Gerke, “Characterizing organic matter of soil aggregate coatings and biopores by Fourier transform infrared spectroscopy,” Eur. J. Soil Sci. 55, 219–228 (2004).CrossRefGoogle Scholar
  22. 22.
    S. A. Gavande, “Estructura del suelo,” in Física del Suelo. Principios y Aplicaciones, (Limusa-Wiley, Mexico, 1977), pp. 77–105.Google Scholar
  23. 23.
    M. G. González, M. E. Conti, R. M. Palma, and N. M. Arrigo, “Dynamics of humic fractions and microbial activity under no-tillage or reduced tillage, as compared with native pasture (Pampa Argentina),” Biol. Fertil. Soils 39, 135–138 (2003).CrossRefGoogle Scholar
  24. 24.
    A. J. Hall, C. M. Rebella, C. M. Ghersa, and J. Cullot, “Field-crop system of Pampas,” in Ecosystems of the World, Vol. 18: Field Crop Ecosystems, Ed. by C. J. Pearson (Elsevier, Ámsterdam, 1992), pp. 413–450.Google Scholar
  25. 25.
    L. Huang, J. Hong, W. Tan, H. Hu, F. Liu, and M. Wang, “Characteristics of micromorphology and element distribution of iron-manganese cutans in typical soils of subtropical China,” Geoderma 146, 40–47 (2008).CrossRefGoogle Scholar
  26. 26.
    E. Jasinska, H. Wetzel, T. Baumgartl, and R. Horn, “Heterogeneity of physico-chemical properties in structured soils and its consequences,” Pedosphere 16 (3), 284–296 (2006).CrossRefGoogle Scholar
  27. 27.
    A. G. Jongmans, F. van Oort, L. Denaix, and A. M. Jaunet, “Mineral micro- and nano-variability revealed by combined micromorphology and in situ submicroscopy,” Catena 35, 259–279 (1999).CrossRefGoogle Scholar
  28. 28.
    J. Lilienfein, W. Wilcke, H. Neufeldt, M. A. Ayarza, and W. Zech, “Land-use effects on organic carbon, nitrogen, and sulphur concentrations in macroaggregates of differently textured Brazilian oxisols,” J. Pant Nutr. Soil Sci. 161, 165–171 (1998).Google Scholar
  29. 29.
    G. A. Martinez, “La influencia de un paisaje heredado sobre el escurrimiento superficial en la Región Pampeana,” in Workshop Manejo Integral de Cuencas Hidrográficas y Planificación Territorial, Ed. by L. Teruggi (Necochea, Buenos Aires, 2001), pp. 47–55.Google Scholar
  30. 30.
    R. O. Michelena, C. B. Irurtia, R. Mon, F. A. Vavruska, and A. Pitaluga, Degradación de Suelos del Norte de la Región Pampeana, INTA Publicación Técnica no. 6 (Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, 1989) [in Spanish].Google Scholar
  31. 31.
    M. B. Molope, T. I. C. Grieve, and E. R. Page, “Contributions by fungi and bacteria to aggregate stability of cultivated soils,” J. Soil Sci. 38, 11–71 (1987).CrossRefGoogle Scholar
  32. 32.
    H. Morrás and G. Píccolo, “Biological recuperation of degraded Ultisols in the Province of Misiones, Argentina,” Adv. GeoEcol. 31, 1211–1215 (1998).Google Scholar
  33. 33.
    H. Morrás, L. Moretti, W. Zech, and G. Píccolo, “Mineralogía de arcillas y susceptibilidad magnética de dos suelos contrastantes del Depto Alem, Misiones,” in Resúmenes XIX Congreso Argentino Ciencia del Suelo, Paraná (Asociación Argentina de la Ciencia del Suelo, Buenos Aires, 2004).Google Scholar
  34. 34.
    J. M. Oades, “Soil organic matter and structural stability, mechanism and implications for management,” Plant Soil 76, 319–337 (1984).CrossRefGoogle Scholar
  35. 35.
    J. M. Oades, “The role of biology in the formation, stabilization and degradation of soil structure,” Geoderma 56, 377–400 (1993).CrossRefGoogle Scholar
  36. 36.
    M. L. Osterrieth and J. L. Cionchi, “Estratigrafía del Cuaternario de la Laguna de Los Padres, provincia de Buenos Aires,” in Resúmenes de las Primeras Jornadas Geológicas Bonaerenses, Tandil (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Buenos Aires, 1985), p. 41.Google Scholar
  37. 37.
    M. Osterrieth and G. Martínez, “Paleosols on Late Cainozoic loessic sequences in the northeastern side of Tandilia Range, Buenos Aires, Argentina,” Quat. Int. 17, 57–65 (1992).CrossRefGoogle Scholar
  38. 38.
    M. Osterrieth and J. Maggi, “Variaciones cuali-cuantitativas de la fracción arcilla en Argiudoles afectados por prácticas agrícolas en Laguna de Los Padres, Buenos Aires,” in VI Reunión Argentina de Sedimentología, Bahía Blanca (Asociación Argentina de Sedimentología, Buenos Aires, 1996), pp. 337–342.Google Scholar
  39. 39.
    M. Osterrieth, C. Fernández, Y. Bilat, P. Martínez, G. Martínez, and M. Trassens, “Geoecología de Argiudoles típicos afectados por prácticas hortícolas en la Llanura Pampeana. Buenos Aires, Argentina,” in Resúmenes XVI Congreso Mundial de la Ciencia del Suelo (Montpellier, 1998), pp. 1–8.Google Scholar
  40. 40.
    M. Osterrieth and M. Fernández Honaine, “Micromorphology and phytoliths study in coastal dunes of the Southeastern Pampean Plains, Buenos Aires province, Argentina,” in Plants, People and Places: Recent Studies in Phytolithic Analysis, Ed. by M. Madella and D. Zurro (Oxbow, Oxford, 2007).Google Scholar
  41. 41.
    M. Osterrieth, M. Madella, D. Zurro, and M. F. Alvarez, “Taphonomical aspects of silica phytoliths in the loess sediments of the Argentinean Pampas,” Quat. Int. 193, 70–79 (2009).CrossRefGoogle Scholar
  42. 42.
    M. Osterrieth, N. Borrelli, M. F. Alvarez, and M. Fernández Honaine, “Silica biogeochemical cycle in temperate ecosystems of the Pampean Plain, Argentina,” J. South Am. Earth Sci. 63, 172–179 (2015).CrossRefGoogle Scholar
  43. 43.
    M. Pagliai, N. Vignozzi, and S. Pellegrini, “Soil structure and the effect of management practices,” Soil Tillage Res. 79, 131–143 (2004).CrossRefGoogle Scholar
  44. 44.
    J. Porta, M. López-Acevedo, and C. Roquero, Edafología. Para la Agricultura y el Medio Ambiente (Mundi-Prensa, Madrid, 1999).Google Scholar
  45. 45.
    I. C. Regelink, C. R. Stoof, S. Rousseva, L. Weng, G. J. Lair, P. Kram, N. P. Nikolaidis, M. Kercheva, S. Banwart, and R. N. J. Comans, “Linkages between aggregate formation, porosity and soil-chemical properties,” Geoderma 247–248, 24–37 (2015).CrossRefGoogle Scholar
  46. 46.
    J. R. Salinas García, F. M. Hons, and J. E. Matocha, “Long-term effects of tillage and fertilization on soil organic matter dynamics,” Soil. Sci. Am. J. 61, 152–159 (1997).CrossRefGoogle Scholar
  47. 47.
    D. Santos, S. L. S. Murphy, H. Taubner, A. J. M. Smucker, and R. Horn, “Uniform separation of concentric surface layers from aggregates,” Soil. Sci. Am. J. 61, 720–724 (1997).CrossRefGoogle Scholar
  48. 48.
    C. E. G. R. Schaefer, F. N. B. Simas, R. J. Gilkes, C. Mathison, L. M. da Costa, and M. A. Albuquerque, “Micromorphology and microchemistry of selected cryosols from maritime Antarctica,” Geoderma 144, 104–115 (2008).CrossRefGoogle Scholar
  49. 49.
    El Deterioro de la Tierras en la República Argentina, Alerta Amarillo (Secretaría de Agricultura, Ganadería y Pesca and Consejo Federal Agropecuario, Buenos Aires, 1995).Google Scholar
  50. 50.
    A. J. Sexstone, N. P. Revsbech, T. B. Parkin, and J. M. Tiedje, “Direct measurement or oxygen profiles and denitrification rates in soil aggregates,” Soil Sci. Soc. Am. J. 49, 645–651 (1985).CrossRefGoogle Scholar
  51. 51.
    J. Six, E. T. Elliot, and K. Paustian, “Soil macroaggregate formation: a mechanism for C sequestration under no-tillage agriculture,” Soil Biol. Biochem. 32, 2099–2103 (2000).CrossRefGoogle Scholar
  52. 52.
    Soil Survey Staff, Keys to Soil Taxonomy (US Department of Agriculture, Washington, DC, 1996).Google Scholar
  53. 53.
    J. M. Tisdall and J. M. Oades, “Organic matter and water stable aggregates in soils,” J. Soil Sci. 33, 141–163 (1982).CrossRefGoogle Scholar
  54. 54.
    J. M. Tisdall, S. E. Smith, and P. Rengasamy, “Aggregation of soil by fungal hyphae,” Aust. J. Soil Res. 35, 55–60 (1997).CrossRefGoogle Scholar
  55. 55.
    P. W. Unger, “Management induced aggregation and organic carbon concentration in the surface layer of a Torrertic Paleustoll,” Soil Tillage Res. 42, 185–208 (1997).CrossRefGoogle Scholar
  56. 56.
    E. Urbanek, P. Hallet, D. Feeney, and R. Horn, “Water repellency and distribution of hydrophilic and hydrophobic compounds in soil aggregates from different tillage systems,” Geoderma 140, 147–155 (2007).CrossRefGoogle Scholar
  57. 57.
    C. Vidal and J. L. Costa, “Evaluación de algunas propiedades físicas en sistemas de labranza reducida y siembra directa,” in Resúmenes XVI Congreso Argentino de la Ciencia del Suelo, Carlos Paz (Asociación Argentina de la Ciencia del Suelo, Buenos Aires, 1998).Google Scholar
  58. 58.
    C. Vizcayno, M. T. Garcia-Gonzalez, M. Gutierrez, and R. Rodriguez, “Mineralogical, chemical and morphological features of salt accumulations in the Flumen–Monegros district, NE Spain,” Geoderma 68, 193–210 (1995).CrossRefGoogle Scholar
  59. 59.
    M. I. von Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzne, G. Guggenberger, B. Marschner, and H. Flessa, “Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review,” Eur. J. Soil. Sci. 57, 426–445 (2006).CrossRefGoogle Scholar
  60. 60.
    M. G. Wilson, C. E. Quintero, N. G. Boschetti, R. A. Benavides, and W. A. Mancuso, “Evaluación de atributos del suelo para su utilización como indicadores de calidad y sostenibilidad en Entre Ríos,” Rev. Fac. Agron. Univ. Nacl. Entre Rios 20 (1), 23–30 (2000).Google Scholar
  61. 61.
    World Reference Base for Soil Resources, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (Food and Agriculture Organization, Rome, 2015)Google Scholar
  62. 62.
    T. M. Zobeck and C. A. Onstad, “Tillage and rainfall effects on random roughness: a review,” Res. 9, 1–20 (1987).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Maria Fernanda Alvarez
    • 1
    • 2
    • 3
    Email author
  • Margarita Luisa Osterrieth
    • 1
    • 2
  1. 1.Instituto de Investigaciones Marinas y Costeras. FCEYN, UNMdP-CONICETMar del PlataArgentina
  2. 2.Instituto de Geología de Costas y del Cuaternario-CIC-FCEyN-UNMdPMar del PlataArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations