Eurasian Soil Science

, Volume 51, Issue 12, pp 1427–1439 | Cite as

Eco-Geochemical Assessment of the Content of Pollutants in Hummocky Bogs of the Kola Peninsula

  • V. Sh. Barkan
  • I. V. LyanguzovaEmail author


The results of eco-geochemical survey of hummocky bogs of the Kola Peninsula at the southern border of their area showed that the climate changes in the recent 60–80 years and the impact of aerotechnogenic pollution did not affect the area of hummocky bog complexes and the depth of the thawing peat layer of conventionally reference and impact high-moor bogs. In the zone affected by the emissions from the Severonikel smelter (Monchegorsk), the content of Ni and Cu in the peat high-moor soils (Cryic Ombric Fibric Histosols) is 60–90 times higher than the level of accumulation of the same metals in the peat of conventionally reference bogs. The S, Cd, Cr, and Pb contents in the compared bog massifs did not differ significantly. In the frozen horizon of the impact bogs, the Ni and Cu content was significantly greater (~ 2 times) than their content in the same layer of the conventionally background bogs, which indicates a vertical migration of pollutants down the peat profile and a deeper technogenic transformation of cryogenic massifs due to the effects of atmospheric emissions from the plant. The profile distribution of pollutants (Ni, Cu, Pb, S, Cr, and Cd) in the peat layer of the impact and conventionally background bogs has its own specific features.


palsa peat high-moor bog soils Cryic Ombric Fibric Histosols aerotechnogenic pollution ash composition of peat heavy metals 



  1. 1.
    G. L. Anufriev, “Mires of the Kola Peninsula,” in Scientific Works of the Kola Botanical and Soil Groups of the Northern Scientific Expedition (Geographical Inst., Petrograd, 1922), No. 3, pp. 35–65.Google Scholar
  2. 2.
    V. Sh. Barkan, “Nickel and copper pollution of soils from industrial metallurgical dust,” in Proceedings of the All-Russia Scientific Conference with International Participation “Ecological Problems of Northern Regions and Their Solution” (Kola Science Center, Russian Academy of Sciences, Apatity, 2008), Part 1, pp. 46–51.Google Scholar
  3. 3.
    V. Sh. Barkan and I. V. Lyanguzova, “Changes in the degree of contamination of organic horizons of Al–Fe-humus podzols upon a decrease in aerotechnogenic loads, the Kola Peninsula,” Eurasian Soil Sci. 51, 327–335 (2018). doi 10.1134/S106422931803002XCrossRefGoogle Scholar
  4. 4.
    V. A. Bobrov, A. A. Bogush, G. A. Leonova, V. A. Kransobaev, and G. N. Anoshin, “Anomalous concentrations of zinc and copper in high-moor peat bog, southeast coast of Lake Baikal,” Dokl. Earth Sci. 439, 1152–1156 (2011).CrossRefGoogle Scholar
  5. 5.
    R. S. Vasilevich, “Accumulation of chemical elements in peat mounds of the permafrost zone of the European Northeast of Russia,” in Proceedings of the XIV All-Russia Scientific-Practical Conference “Biodiagnostics of Natural and Technogenic Systems” (Kirov, 2016), pp. 322–326.Google Scholar
  6. 6.
    R. S. Vasilevich, “Composition of trace elements in permafrost peat mounds of the European Northeast of Russia,” in Proceedings of the Fifth International Field Symposium “West Siberian Peatbogs and Carbon Cycle: Past and Future” (Tomsk, 2017), pp. 131–133.Google Scholar
  7. 7.
    E. E. Veretennikova, “The content and distribution of chemical elements in peats of the southern taiga subzone of Western Siberia,” Geogr. Prirod. Resur., No. 2, 89–95 (2013).Google Scholar
  8. 8.
    N. V. Vlasova and M. N. Nikonov, “Peatbogs along the coasts of Nud-yavr Lake and their possible use,” in A Report on the Results of Peat Analyzing Expedition No. 1 (Moscow, 1940) [in Russian].Google Scholar
  9. 9.
    E. L. Vorobeichik and S. Yu. Kaigorodova, “Long-term dynamics of heavy metals in the upper horizons of soils in the region of a copper smelter impacts during the period of reduced emission, Eurasian Soil Sci. 50, 977–990 (2017). doi 10.1134/S1064229317080130CrossRefGoogle Scholar
  10. 10.
    L. P. Gashkova, “Dynamics of the content of heavy metals in peatbogs of Tomsk oblast under anthropogenic load,” in Proceedings of the Third International Scientific-Practical Conference “Study and Use of Peat Resources of Siberia” (Tomsk, 2015), pp. 61–63.Google Scholar
  11. 11.
    B. N. Gorodkov, “Permafrost areas in the North,” Tr. Sov. Izuch. Proizvod. Sil, No. 1, 5–109 (1932).Google Scholar
  12. 12.
    A. N. Egorov, “Permafrost areas in peat bogs along the coasts of Nyud Lake and Moncha tundra (Kola Peninsula),” Tr. Kom. Vechnoi Merzlote, Akad. Nauk SSSR 7, 113–125 (1938).Google Scholar
  13. 13.
    Yearbook of the Kola mining and metallurgical companies, 2008. Accessed April 27, 2018.Google Scholar
  14. 14.
    G. A. Elina, Kh. A. Arslanov, V. A. Klimanov, and L. I. Usova, “Vegetation and climatochronology of Holocene in the Lovozerskaya Plain of the Kola Peninsula according to the spore-pollen diagrams of peat mounds,” Bot. Zh. 80 (3), 1–16 (1995).Google Scholar
  15. 15.
    G. A. Elina, L. V. Filimonova, S. I. Grabovnik, and V. I. Kostina, “Mires of the Kola Peninsula,” Tr. Karel. Nauch. Tsentra, Ross. Akad. Nauk, No. 8, 94–111 (2005).Google Scholar
  16. 16.
    T. T. Efremova and S. P. Efremov, “Ecological and geochemical assessment of heavy-metal and sulfur pollution levels in mound peatbogs of southern Taimyr,” Contemp. Probl. Ecol. 7, 685–693 (2014).CrossRefGoogle Scholar
  17. 17.
    D. A. Kaverin, E. M. Lapteva, and A. V. Pastukhov, “Specific structure of permafrost peatbogs in the European Northeast and their organic matter,” Teor. Prikl. Ekol., No. 1, 13–20 (2015).Google Scholar
  18. 18.
    D. A. Kaverin, A. V. Pastukhov, E. M. Lapteva, C. Biasi, M. Marushchak, and P. Martikainen, “Morphology and properties of the soils of permafrost peatlands in the southeast of the Bol’shezemel’skaya tundra,” Eurasian Soil Sci. 49, 498–511 (2016). doi 10.1134/S1064229316050069CrossRefGoogle Scholar
  19. 19.
    G. M. Kashulina, “Extreme pollution of soils by emissions of the copper–nickel industrial complex in the Kola Peninsula,” Eurasian Soil Sci. 50, 837–849 (2017). doi 10.1134/S1064229317070031CrossRefGoogle Scholar
  20. 20.
    L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  21. 21.
    G. S. Konstantinova, “On peat mounds in the mires of the Kola Peninsula,” Tr. Inst. Vechnoi Merzloty, Akad. Nauk SSSR 13, (1953).Google Scholar
  22. 22.
    E. M. Koptseva, N. Yu. Natsvaladze, and E. N. Zhuravleva, “Transformation of vegetation of a large-mound bog of the Kola Peninsula affected by climate changes,” Bot. Zh. 101 (5), 537–547 (2016).CrossRefGoogle Scholar
  23. 23.
    M. A. Lavrova, “Analysis of permafrost areas in Volch’ya and Monche tundras of the Kola Peninsula,” Tr. Inst. Vechnoi Merzloty, Akad. Nauk SSSR No. 3, 117–120 (1934).Google Scholar
  24. 24.
    N. S. Larina, S. I. Larin, and G. A. Merkushina, “Accumulation of chemical elements in the raised peatbogs of the subtaiga Trans-Urals in the Holocene,” Eurasian Soil Sci. 47, 670–681 (2014). doi 10.1134/ S1064229314050123CrossRefGoogle Scholar
  25. 25.
    A. V. Lupachev and S. V. Gubin, “Role of pedogenesis in the formation of transient permafrost layer,” Kriosfera Zemli 12 (2), 75–83 (2008).Google Scholar
  26. 26.
    I. V. Lyanguzova, D. K. Goldvirt, and I. K. Fadeeva, “Spatiotemporal dynamics of the pollution of Al–Fe-humus podzols in the impact zone of a nonferrous metallurgical plant,” Eurasian Soil Sci. 49, 1189–1203 (2016). doi 10.7868/S0032180X16100105CrossRefGoogle Scholar
  27. 27.
    N. G. Moskalenko, “Changes in the permafrost temperature and vegetation under the impact of changing climate and technogenic loads in Nadym district of Western Siberia,” Kriosfera Zemli 13 (4), 18–23 (2009).Google Scholar
  28. 28.
    A. V. Pastukhov, D. A. Kaverin, and N. N. Goncharova, “Relict peat mounds at the southern margins of the East European permafrost zone,” Teor. Prikl. Ekol., No. 1, 77–86 (2015).Google Scholar
  29. 29.
    A. V. Pastukhov and D. A. Kaverin, “Ecological state of peat plateaus in northeastern European Russia,” Russ. J. Ecol. 47, 125–132 (2016). doi 10.1134/ S1067413616010100CrossRefGoogle Scholar
  30. 30.
    A. V. Pastukhov, T. I. Marchenko-Vagapova, D. A. Kaverin, and N. N. Goncharova, “Genesis and evolution of mound bogs in the zone of isolated permafrost in the northeast of Europe (middle reaches of the Kos’yu River),” Kriosfera Zemli 20 (1), 3–14 (2016).Google Scholar
  31. 31.
    A. V. Pastukhov, T. I. Marchenko-Vagapova, D. A. Kaverin, S. P. Kulizhskii, O. L. Kuznetsov, and V. S. Panov, “Dynamics of peat plateau near the southern boundary of the East European permafrost zone,” Eurasian Soil Sci. 50, 526–538 (2017).Google Scholar
  32. 32.
    A. V. Pastukhov, C. Knoblauch, E. V. Yakovleva, and D. A. Kaverin, “Markers of soil organic matter transformation in permafrost peat mounds of Northeastern Europe,” Eurasian Soil Sci. 51, 42–53 (2018). doi 10.1134/S106422931801013110.1134/S106422931703009732Google Scholar
  33. 33.
    V. Ya. Poznyakov, Severonikel Mining and Metallurgical Company (Ruda i Metally, Moscow, 1999) [in Russian].Google Scholar
  34. 34.
    N. I. P’yavchenko, Mound Peatbogs (Academy of Sciences of USSR, Moscow, 1955) [in Russian].Google Scholar
  35. 35.
    G. D. Rikhter, “The peat mounds near Nyud Lake,” Tr. Kom. Vechnoi Merzlote, Akad. Nauk SSSR, No. 3, 121–126 (1934).Google Scholar
  36. 36.
    M. I. Sumgin, “On permafrost in peat mounds of the Kola Peninsula,” Tr. Kom. Vechnoi Merzlote, Akad. Nauk SSSR, No. 3, 107–115 (1934).Google Scholar
  37. 37.
    A. P. Tyrtikov, Influence of Vegetation Cover on Freezing and Thawing Grounds (Moscow State Univ., Moscow, 1969) [in Russian].Google Scholar
  38. 38.
    E. A. Shishkonakova, N. A. Avetov, and T. Yu. Tolpysheva, “Peat soils of regressive boreal bogs of Western Siberia: biological diagnostics and classification,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 84, 61–74 (2016). doi 10.19047/0136-1694-2016-84-61-74Google Scholar
  39. 39.
    Yu. L. Shur, The Upper Horizon of Permafrost and Thermokarst (Nauka, Novosibirsk, 1988) [in Russian].Google Scholar
  40. 40.
    E. G. Chernov, “Map of vegetation,” in Atlas of Murmansk Oblast (Murmansk, 1971), No. 17.Google Scholar
  41. 41.
    B. A. Yakovlev, Climate of Murmansk Oblast (Murmansk. Knizhn. Izd., Murmansk, 1961) [in Russian].Google Scholar
  42. 42.
    V. Barcan, “Nature and origin of multicomponent aerial emissions of the copper-nickel smelter complex,” Environ. Int. 28, 451–456 (2002).CrossRefGoogle Scholar
  43. 43.
    V. Sh. Barcan, “Stability of palsa at the southern margin of its distribution on the Kola Peninsula,” Polar Sci. 4, 489–495 (2010).CrossRefGoogle Scholar
  44. 44.
    Kola Peninsula and Forest Ecosystems in Lapland, Final Report of the Lapland Forest Damage Project, Ed. by E. Tikkanen and I. Niemel (Rovaniemi, 1995).Google Scholar
  45. 45.
    M. Kozlov and V. Barcan, “Environmental disturbances in the central part of the Kola Peninsula: history, researches, and perception,” Ambio 29, 512–517 (2000).CrossRefGoogle Scholar
  46. 46.
    V. Ostroumov, R. Hoover, N. Ostroumova, B. van Vliet-Lanoe, Ch. Siegert, and V. Sorokovikov, “Redistribution of soluble components during ice segregation in freezing ground,” Cold Reg. Sci. Technol. 32, 175–182 (2001).CrossRefGoogle Scholar
  47. 47.
    J. B. Railton and J. H. Sparling, “Preliminary studies of the ecology of palsa mounds in Northern Ontario,” Can. J. Bot. 51, 1037–1044 (1973).CrossRefGoogle Scholar
  48. 48.
    M. Seppälä, “The term “palsa,” Z. Geomorphol. 16 (4), 463–465 (1972).Google Scholar
  49. 49.
    M. Seppälä, “The origin of palsas,” Geogr. Ann. A, 63 (3), 141–147 (1982).Google Scholar
  50. 50.
    M. Seppälä, “Palsas and related forms,” in Advances in Periglacial Geomorphology, Ed. by M. J. Clark (Wiley, Chichester, 1988), pp. 247–278.Google Scholar
  51. 51.
    M. Seppälä, “Snow depth controls palsa growth,” Permafrost Periglacial Process. 5, 283–288 (1994).CrossRefGoogle Scholar
  52. 52.
    M. Seppälä, “Distribution of permafrost in Finland,” Bull. Geol. Soc. Fin. 69 (1–2), 87–96 (1997).CrossRefGoogle Scholar
  53. 53.
    M. Seppälä, “New permafrost formed in peat hummocks (pounus), Finnish Lapland,” Permafrost Periglacial Process. 9, 367–373 (1998).CrossRefGoogle Scholar
  54. 54.
    J. L. Sollid and L. Sorbel, “Palsa bogs as a climate indicator—examples from Dovrefjell, Southern Norway,” Ambio 27, 287–291 (1998).Google Scholar
  55. 55.
    V. A. Stepanova, O. S. Pokrovsky, J. Viers, N. P. Mironycheva-Tokareva, N. P. Kosykh, and E. K. Vishnyakova, “Elemental composition of peat profiles in western Siberia: Effect of the micro-landscape, latitude position and permafrost coverage,” Appl. Geochem. 53, 53–70 (2015).CrossRefGoogle Scholar
  56. 56.
    S. C. Zoltai and C. Tarnocai, “Properties of wooded palsa in Northern Manitoba,” Arct. Alp. Res. 3 (2), 115–129 (1971).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Lapland State Biospheric ReserveMonchegorskRussia
  2. 2.Komarov Botanical Institute, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations