Advertisement

Eurasian Soil Science

, Volume 51, Issue 11, pp 1326–1347 | Cite as

From the Notion of Elementary Soil Particle to the Particle-Size and Microaggregate-Size Distribution Analyses: A Review

  • A. V. Yudina
  • D. S. Fomin
  • A. D. Kotelnikova
  • E. Yu. Milanovskii
SOIL PHYSICS
  • 13 Downloads

Abstract

A review of approaches to particle-size and microaggregate-size distribution analyses applied in soil science is given. The concepts of the structural organization of soils, primary soil particles, elementary soil particles, and soil microaggregates are considered. Methodological problems, such as the preparation of soil samples for the analyses and interpretation and comparison of the results obtained by different methods, are discussed. The authors suggest the theoretical substantiation of differences between the notions of primary soil particles (soil building units) and elementary soil particles. Primary soil particles are individual mineral particles. Elementary soil particles are solid-phase products of pedogenesis represented by fragments of rocks and minerals and by organomineral and organic particles, all the components of which participate in chemical and physicochemical interactions. Special attention is paid to the existing classifications of soils according to their textures. It is suggested that the upper boundary of the clay fraction in the Russian classification should be shifted from 1 to 2 µm.

Keywords:

structural organization of soils classification of soil textures continuous particle-size distribution curve methods of soil dispersion pedofeatures 

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 18-34-00825. The authors are grateful to Dr. N.B. Khitrov and Dr. E.B. Skvortsova for fruitful discussions and valuable comments and questions.

REFERENCES

  1. 1.
    T. V. Alekseeva, “Soil microstructure and factors of its formation,” Eurasian Soil Sci. 40, 649–659 (2007).CrossRefGoogle Scholar
  2. 2.
    I. N. Antipov-Karataev, “The concept about soil as a polydisperse system and its development in the Soviet Union in 1917–1942,” Pochvovedenie, No. 6, 3–26 (1943).Google Scholar
  3. 3.
    Z. S. Artem’eva, Organic Matter and Granulometric System of Soil (GEOS, Moscow, 2010) [in Russian].Google Scholar
  4. 4.
    P. N. Berezin, “Specificity of particle-size distribution in soils and parent materials,” Pochvovedenie, No. 2, 64–72 (1983).Google Scholar
  5. 5.
    P. N. Berezin, Doctoral Dissertation in Biology (Moscow, 1995).Google Scholar
  6. 6.
    M. A. Bronnikova and V. O. Targulian, Assemblage of Cutans in Texturally Differentiated Soils (Akademkniga, Moscow, 2005) [in Russian].Google Scholar
  7. 7.
    A. F. Vadyunina and Z. A. Korchagina, Physical Analysis of Soils (Agropromizdat, Moscow, 1986) [in Russian].Google Scholar
  8. 8.
    A. A. Valeeva and G. S. Koposov, “Influence of soil preparation on the interpretation of soil particle-size distribution data,” Uch. Zap. Kazan. Univ., Ser. Estestv. Nauki 155 (2), 172–178 (2013).Google Scholar
  9. 9.
    A. Ya. Vanyushina and L. S. Travnikova, “Organic-mineral interactions in soils: a review,” Eurasian Soil Sci. 36, 379–387 (2003).Google Scholar
  10. 10.
    A. M. Vasil’ev, Analysis of Physical Properties of Soils (Gos. Izd. Mold., Chisinau, 1952) [in Russian].Google Scholar
  11. 11.
    A. M. Vasil’ev, “Physical constants of clay soils,” in Hydrogeology and Engineering Geology (Gosgeolizdat, Moscow, 1937), No. 4, pp. 37–40.Google Scholar
  12. 12.
    A. D. Voronin, Structural-Functional Hydrophysics of Soils (Moscow State Univ., Moscow, 1984) [in Russian].Google Scholar
  13. 13.
    A. D. Voronin, “Active surface of the fractions of mechanical elements in soil complexes of the light chestnut soil subzone,” Nauchn. Dokl. Vyssh. Shk., Biol. Nauki, No. 3, (1959).Google Scholar
  14. 14.
    K. K. Gedroits, Soil as a Cultural Environment for Agricultural Plants. Soil Colloids and Salinity of Soils According to the Data of Agrochemical Department of Nosovskaya Agricultural Experimental Station: A Review (Kiev-Pechat’, Kiev, 1926) [in Russian].Google Scholar
  15. 15.
    M. I. Gerasimova, S. V. Gubin, and S. A. Shoba, Micromorphology of Soils of the Natural Zones of the Soviet Union (Pushchino Scientific Center, Russian Academy of Sciences, Pushchino, 1992) [in Russian].Google Scholar
  16. 16.
    GOST (State Standard) 12536-2014: Soils. Methods of Laboratory Granulometric (Grain-Size) and Microaggregate Distribution (Standartinform, Moscow, 2015) [in Russian].Google Scholar
  17. 17.
    B. P. Gradusov, “Evolutionare stages of soddy-podzolic loamy soils,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 59, 14–22 (2007).Google Scholar
  18. 18.
    S. I. Dolgov, Agrophysical Analysis of Soils (Nauka, Moscow, 1966) [in Russian].Google Scholar
  19. 19.
    F. R. Zaidel’man, Theory of the Development of Light Acid Eluvial Soil Horizons and Its Applied Aspects (Krasand, Moscow, 2010) [in Russian].Google Scholar
  20. 20.
    F. R. Zaidel’man and A. S. Nikiforova, “Ferromanganese concretionary neoformations: a review,” Eurasian Soil Sci. 43, 248–258 (2010).CrossRefGoogle Scholar
  21. 21.
    S. V. Zonn, Pedogenesis and Soil of the Tropics and Subtropics (Nauka, Moscow, 1974) [in Russian].Google Scholar
  22. 22.
    I. V. Ivanov, “The structure of soil systems,” in Soils, Biogeochemical Cycles, and the Biosphere (KMK, Moscow, 2004), pp. 50–69.Google Scholar
  23. 23.
    N. A. Kachinskii, Mechanical and Microaggregate Composition of Soil and Methods for Its Study (Academy of Sciences of Soviet Union, Moscow, 1958) [in Russian].Google Scholar
  24. 24.
    N. A. Kachinskii, “The nature of soil structuring,” in Physics, Chemistry, Biology, and Mineralogy of Soils of the Soviet Union, Ed. by I. P. Gerasimov (Nauka, Moscow, 1964) [in Russian].Google Scholar
  25. 25.
    D. S. Kashik, Methods of Mineralogical Studies: A Handbook (Nedra, Moscow, 1985), pp. 60–74.Google Scholar
  26. 26.
    A. V. Kinsht, “Chemical analysis of fine fractions of two types of soils with an eluvial–illuvial profile,” in Analysis of Siberian Soils (Novosibirsk, 1977) [in Russian].Google Scholar
  27. 27.
    A. G. Kornilova, A. A. Shinkarev, T. Z. Lygina, K. G. Giniyatullin, and R. R. Gil’mutdinov, “Optimization of sample preparation for the bulk elemental analysis of the mineral part of forest-steppe soils,” Uch. Zap. Kazan. Univ., Ser. Estestv. Nauki 153 (3), (2011).Google Scholar
  28. 28.
    A. O. Makeev and O. V. Makeev, Soils with Texture-Differentiated Profiles in the Main Cryogenic Areas of the North of the Russian Plain (Scientific Center of Biological Studies, Academy of Sciences of the Soviet Union, Pushchino, 1989) [in Russian].Google Scholar
  29. 29.
    A. A. Rode, Chemical Composition of Mechanical Fractions of Some Soils of Podzolic and Bog-Podzolic Types, Tr. Pochv. Inst. im. V.V. Dokuchaeva vol. 8 (Academy of Sciences of the Soviet Union, Leningrad, 1933) [in Russian].Google Scholar
  30. 30.
    B. G. Rozanov, Soil Morphology (Akademicheskii Proekt, Moscow, 2004) [in Russian]. ISBN 5-8291-0451-2.Google Scholar
  31. 31.
    S. V. Romanov, “Comparative characteristics of several methods of soil preparation for mechanical analysis,” Pochvovedenie, No. 4, 150–154 (1974).Google Scholar
  32. 32.
    E. M. Sergeev, Engineering Geology (Moscow State Univ., Moscow, 1982) [in Russian].Google Scholar
  33. 33.
    I. A. Sokolov, Pedogenesis and Exogenesis (Dokuchaev Soil Science Inst., Moscow, 1997) [in Russian].Google Scholar
  34. 34.
    T. A. Sokolova, “Transformation of clay material in some acid texture-differentiated soils with a bleached horizon,” in Problems in Soil Science (Nauka, Moscow, 1982) [in Russian].Google Scholar
  35. 35.
    V. O. Targulian, “Elementary pedogenic processes,” Eurasian Soil Sci. 38, 1255–1264 (2005).Google Scholar
  36. 36.
    V. O. Targulian and S. V. Goryachkin, Soil Memory: Soil as the Memory of the Biosphere–Geosphere–Anthroposphere Interactions (LKI, Moscow, 2008) [in Russian].Google Scholar
  37. 37.
    N. A. Titova, L. S. Travnikova, and M. Sh. Shaimukhametov, “Development of the studies on interaction between organic and mineral components of soils,” Pochvovedenie, No. 5, 639–646 (1995).Google Scholar
  38. 38.
    N. A. Titova, L. S. Travnikova, and Yu. V. Kuvaeva, “The composition of the components of fine particles in arable soddy-podzolic soil,” Pochvovedenie, No. 6, 89–97 (1989).Google Scholar
  39. 39.
    V. D. Tonkonogov, Clay-Differentiated Soils of the European Part of Russia (Dokuchaev Soil Science Inst., Moscow, 1999) [in Russian].Google Scholar
  40. 40.
    V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, “General horizon- and profile-forming processes in Russian soils,” in Pedogenic Processes (Dokuchaev Soil Science Inst., Moscow, 2006) [in Russian].Google Scholar
  41. 41.
    T. V. Tursina, “Approaches to the study of the lithological homogeneity of soil profiles and soil polygenesis,” Eurasian Soil Sci. 45, 472–487 (2012).CrossRefGoogle Scholar
  42. 42.
    A. F. Tyulin, “Methods of peptization analysis in relation to general regularities in the chemical and physical properties of soils,” Pochvovedenie, Nos. 4–5, 3–15 (1943).Google Scholar
  43. 43.
    Chemical Encyclopedia, Vol. 1: Ablative Materials–Darzens Reaction (Sovetskaya Entsiklopediya, Moscow, 1988) [in Russian].Google Scholar
  44. 44.
    N. B. Khitrov and O. A. Chechueva, “Interpretation of data on macro- and microstructure of soils,” Pochvovedenie, No. 2, 84–92 (1994).Google Scholar
  45. 45.
    N. P. Chizhikova and P. G. Panin, “Informativness of fine-dispersed part of paleosols and loesses of the Late and Middle Pleistocene in the center of the East European Plain,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 59, (2007).Google Scholar
  46. 46.
    M. Sh. Shaimukhametov, N. A. Titova, L. S. Travnikova, and E. M. Labenets, “Physical fractionation methods for characterization of soil organic matter,” Pochvovedenie, No. 8, 131–141 (1984).Google Scholar
  47. 47.
    E. V. Shein, “The particle-size distribution in soils: problems of the methods of study, interpretation of the results, and classification,” Eurasian Soil Sci. 42, 284–291 (2009).CrossRefGoogle Scholar
  48. 48.
    E. V. Shein, Soil Physics (Moscow State Univ., Moscow, 2005) [in Russian].Google Scholar
  49. 49.
    E. V. Shein, T. A. Arkhangel’skaya, V. M. Goncharov, A. K. Guber, T. N. Pochatkova, M. A. Sidorova, A. V. Smagin, and A. B. Umarova, Field and Laboratory Analysis of Physical Properties and Regimes of Soils: Methodological Manual (Moscow State Univ., Moscow, 2001) [in Russian].Google Scholar
  50. 50.
    E. V. Shein and T. N. Pochatkova, “Microaggregate analysis of soils,” in Theories and Methods of Soil Physics (Grif i K°, Moscow, 2007) [in Russian].Google Scholar
  51. 51.
    A. A. Shinkarev, A. G. Kornilova, F. A. Trofimova, A. S. Gordeev, K. G. Giniyatullin, and T. Z. Lygina, “Comparison of sedimentation and laser diffraction methods in the analysis of the granulometric composition of the clay fraction of soils,” Uch. Zap. Kazan. Univ., Ser. Estestv. Nauki 152 (2), (2010).Google Scholar
  52. 52.
    L. L. Shishov, Classification of Russian Soils (Dokuchaev Soil Science Inst., Moscow, 1997) [in Russian].Google Scholar
  53. 53.
    A. V. Yudina, “Granulometric composition and lithological heterogeneity of genetic horizons of soils of the Baer hills and associated landscapes,” Mater. Izuch. Russ. Pochv., No. 7 (34), 40–42 (2013).Google Scholar
  54. 54.
    A. V. Yudina and E. Yu. Milanovskii, “Microaggregate analysis of soils by laser diffraction: specificity of sample pretreatment and interpretation of the results,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 89, 3–20 (2017).Google Scholar
  55. 55.
    T. M. Abu-Sharar, F. T. Bingham, and J. D. Rhoades, “Stability of soil aggregates as affected by electrolyte concentration and composition,” Soil Sci. Soc. Am. J. 51, 309–314 (1987).CrossRefGoogle Scholar
  56. 56.
    E. B. Alexander, Soils in Natural Landscapes (CRC Press, Boca Ration, Fl., 2013).CrossRefGoogle Scholar
  57. 57.
    W. Amelung and W. Zech, “Minimization of organic matter disruption during particle-size fractionation of grassland epipedons,” Geoderma 92 (1–2), 73–85 (1999).CrossRefGoogle Scholar
  58. 58.
    E. Amézketa, R. Aragüés, R. Carranza, and B. Urgel, “Macro- and micro-aggregate stability of soils determined by a combination of wet-sieving and laser-ray diffraction,” Span. J. Agric. Res. 1 (4), 83–94 (2003).CrossRefGoogle Scholar
  59. 59.
    J. U. Anderson, “An improved pretreatment for mineralogical analysis of samples containing organic matter,” Clays Clay Miner. 10 (3), 380–388 (1963).CrossRefGoogle Scholar
  60. 60.
    M. P. Arnett, PhD Thesis (Texas A&M Univ., College Station, TX, 2009).Google Scholar
  61. 61.
    L. M. Arya and J. F. Paris, “A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data,” Soil Sci. Soc. Am. J. 45 (6), 1023–1030 (1981).CrossRefGoogle Scholar
  62. 62.
    A. Atterberg, “Die mechanische Bodenanalyse und die Klassifikation der Mineralböden Schwedens,” Int. Mitt. Bodenkd. 2, 312–342 (1912).Google Scholar
  63. 63.
    P. Barak, K. McSweeney, and C. A. Seybold, “Self-similitude and fractal dimension of sand grains,” Soil Sci. Soc. Am. J. 60 (1), 72–76 (1996).CrossRefGoogle Scholar
  64. 64.
    L. Beuselinck, “Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method,” Catena 32 (3), 193–208 (1998).CrossRefGoogle Scholar
  65. 65.
    M. Bittelli, G. S. Campbell, and M. Flury, “Characterization of particle-size distribution in soils with a fragmentation model,” Soil Sci. Soc. Am. J. 63 (4), 782–788 (1999).CrossRefGoogle Scholar
  66. 66.
    S. J. Blott and K. Pye, “Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures,” Sedimentology 59 (7), 2071–2096 (2012).CrossRefGoogle Scholar
  67. 67.
    J. Bouma, “Using soil survey data for quantitative land evaluation,” Adv. Soil Sci. 9, 177–213 (1989).CrossRefGoogle Scholar
  68. 68.
    J. Bouma and H. A. J. van Lanen, “Transfer functions and threshold values: from soil characteristics to land qualities,” in Proceedings of the International Workshop on Quantified Land Evaluation Procedures, April 27–May 2, 1986 (Washington, DC, 1986), pp. 106–110.Google Scholar
  69. 69.
    S. J. Bourget and C. B. Tanner, “Removal of organic matter with sodium hypobromite for particle-size analysis of soils,” Can. J. Agric. Sci. 33, 579–585 (1953).Google Scholar
  70. 70.
    T. G. Boyadgiev and W. H. Verheye, “Contribution to a utilitarian classification of gypsiferous soil,” Geoderma 74 (3–4), 321–338 (1996).CrossRefGoogle Scholar
  71. 71.
    G. D. Buchan, K. S. Grewal, and A. B. Robson, “Improved models of particle-size distribution: an illustration of model comparison techniques,” Soil Sci. Soc. Am. J. 57 (4), 901–908 (1993).CrossRefGoogle Scholar
  72. 72.
    P. Buurman, T. Pape, and C. C. Muggler, “Laser grain-size determination in soil genetic studies 1. Practical problems,” Soil Sci. 162 (3), 211–218 (1997).CrossRefGoogle Scholar
  73. 73.
    M. N. Camargo, E. Klamt, and J. H. Kauffman, Soil Classification as Used in Brazilian Soil Surveys, Annual Report of ISRIC (International Soil Reference and Information Centre, Wageningen, 1986), pp. 7–42.Google Scholar
  74. 74.
    C. Cerli, L. Celi, K. Kalbitz, G. Guggenberger, and K. Kaiser, “Separation of light and heavy organic matter fractions in soil—testing for proper density cut-off and dispersion level,” Geoderma 170, 403–416 (2012).CrossRefGoogle Scholar
  75. 75.
    A. Chappell, “Dispersing sandy soil for the measurement of particle size distributions using optical laser diffraction,” Catena 31 (4), 271–281 (1998).CrossRefGoogle Scholar
  76. 76.
    C. Chenu and A. T. Plante, “Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the 'primary organo-mineral complex,” Eur. J. Soil Sci. 57 (4), 596–607 (2006).CrossRefGoogle Scholar
  77. 77.
    C. Chenu, “Influence of a fungal polysaccharide, scleroglucan, on clay microstructures,” Soil Biol. Biochem. 21 (2), 299–305 (1989).CrossRefGoogle Scholar
  78. 78.
    D. J. Chittleborough, “Effect of the method of dispersion on the yield of clay and fine clay,” Aust. J. Soil Res. 20 (4), 339–346 (1982).CrossRefGoogle Scholar
  79. 79.
    B. T. Christensen, “Physical fractionation of soil and organic matter in primary particle size and density separates,” in Advances in Soil Science (Springer, New York, 1992), pp. 1–90.Google Scholar
  80. 80.
    B. T. Christensen, “Physical fractionation of soil and structural and functional complexity in organic matter turnover,” Eur. J. Soil Sci. 52 (3), 345–353 (2001).CrossRefGoogle Scholar
  81. 81.
    A. R. Dexter, “Advances in characterization of soil structure,” Soil Tillage Res. 11, 199–238 (1988).CrossRefGoogle Scholar
  82. 82.
    A. P. Edwards and J. M. Bremner, “Dispersion of soil particles by sonic vibration,” J. Soil Sci. 18, 47–63 (1967).CrossRefGoogle Scholar
  83. 83.
    A. P. Edwards and J. M. Bremner, “Dispersion of mineral colloids in soils using cation exchange resins,” Nature 205 (4967), 208–209 (1965).CrossRefGoogle Scholar
  84. 84.
    A. P. Edwards and J. M. Bremner, “Microaggregates in soils,” J. Soil Sci. 18 (1), 64–73 (1967).CrossRefGoogle Scholar
  85. 85.
    A. P. Edwards and J. M. Bremner, “Use of sonic vibration for separation of soil particles,” Can. J. Soil Sci. 44, 366 (1964).CrossRefGoogle Scholar
  86. 86.
    E. T. Elliott and C. A. Cambardella, “Physical separation of soil organic matter,” Agric., Ecosyst. Environ. 34 (1–4), 407–419 (1991).CrossRefGoogle Scholar
  87. 87.
    W. W. Emerson, “Determination of the contents of clay-sized particles in soils,” J. Soil Sci. 22 (1), 50–59 (1971).CrossRefGoogle Scholar
  88. 88.
    EN ISO 14688-1:2002: Geotechnical Investigation and Testing—Identification and Classification of Soil. Part 1. Identification and Description (Comité Européen de Normalization, Brussels, 2002).Google Scholar
  89. 89.
    J. Eriksen, R. D. B. Lefroy, and G. J. Blair, “Physical protection of soil organic S studied using acetylacetone extraction at various intensities of ultrasonic dispersion,” Soil Biol. Biochem. 27 (8), 1005–1010 (1995).CrossRefGoogle Scholar
  90. 90.
    G. Eshel, “Critical evaluation of the use of laser diffraction for particle-size distribution analysis,” Soil Sci. Soc. Am. J. 68 (3), 736–743 (2004).CrossRefGoogle Scholar
  91. 91.
    L. Esmaeelnejad, F. Siavashi, J. Seyedmohammadi, and M. Shabanpour, “The best mathematical models describing particle size distribution of soils,” Model. Earth Syst. Environ. 2 (4), 166 (2016).CrossRefGoogle Scholar
  92. 92.
    K. Eusterhues, C. Rumpel, M. Kleber, and I. Kögel-Knabner, “Stabilization of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation,” Org. Geochem. 34 (12), 1591–1600 (2003).CrossRefGoogle Scholar
  93. 93.
    K. Eusterhues, C. Rumpel, and I. Kögel-Knabner, “Stabilization of soil organic matter isolated via oxidative degradation,” Org. Geochem. 36 (11), 1567–1575 (2005).CrossRefGoogle Scholar
  94. 94.
    FAO/UNESCO Soil Map of the World, Revised Legend (Food and Agriculture Organization, Rome, 1988).Google Scholar
  95. 95.
    V. C. Farmer and B. D. Mitchell, “Occurrence of oxalates in soil clays following hydrogen peroxide treatment,” Soil Sci. 94 (4), 221–229 (1963).CrossRefGoogle Scholar
  96. 96.
    R. E. Francis and R. Aguilar, “Calcium carbonate effects on soil textural class in semiarid wild land soils,” Arid Land Res. Manage. 9 (2), 155–165 (1995).Google Scholar
  97. 97.
    M. D. Fredlund, G. W. Wilson, and D. G. Fredlund, “Use of the grain-size distribution for estimation of the soil-water characteristic curve,” Can. Geotech. J. 39 (5), 1103–1117 (2002).CrossRefGoogle Scholar
  98. 98.
    A. J. Fristensky and M. E. Grismer, “Evaluation of ultrasonic aggregate stability and rainfall erosion resistance of disturbed and amended soils in the Lake Tahoe Basin, USA,” Catena 79 (1), 93–102 (2009).CrossRefGoogle Scholar
  99. 99.
    W. R. Gardner, “Representation of soil aggregate-size distribution by a logarithmic-normal distribution,” Soil Sci. Soc. Am. J. 20 (2), 151–153 (1956).CrossRefGoogle Scholar
  100. 100.
    G. W. Gee and D. Or, “Particle-size analysis,” in Methods of Soil Analysis: Part 4 Physical Methods, Chap. 2: The Solid Phase, SSSA Book Series 5.4 (Soil Science Society of America, Madison, WI, 2002), No. 2.4.Google Scholar
  101. 101.
    D. A. Genrich and J. M. Bremner, “A reevaluation of the ultrasonic-vibration method of dispersing soils,” Soil Sci. Soc. Am. J. 36 (6), 944–947 (1972).CrossRefGoogle Scholar
  102. 102.
    T. A. Ghezzehei, “Soil structure,” in Handbook of Soil Sciences: Properties and Processes, Ed. by P. Huang, Y. Li, and M. Sumner (CRC Press, Boca Raton, 2012), Vol. 2.Google Scholar
  103. 103.
    A. Golchin, J. M. Oades, J. O. Skjemstad, and P. Clarke, “Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy,” Soil Res. 32 (2), 285–309 (1994).CrossRefGoogle Scholar
  104. 104.
    D. J. Greenland, “Interactions between humic and fulvic acids and clays,” Soil Sci. 111 (1), 34–41 (1971).CrossRefGoogle Scholar
  105. 105.
    E. G. Gregorich, M. H. Beare, U. F. McKim, and J. O. Skjemstad, “Chemical and biological characteristics of physically uncomplexed organic matter,” Soil Sci. Soc. Am. J. 70 (3), 975–985 (2006).CrossRefGoogle Scholar
  106. 106.
    J. E. Guedez and R. Langohr, “Some characteristics of pseudo-silts in a soil-toposequence of the Llanos Orientals (Venezuela),” Pédologie 28, 118–131 (1978).Google Scholar
  107. 107.
    N. Q. Hai and K. Egashira, “Clay mineralogy of ferralitic soils derived from igneous rocks in Vietnam,” Clay Sci. 13 (6), 189–197 (2008).Google Scholar
  108. 108.
    P. R. Hesse, “Particle size distribution in gypsic soils,” Plant Soil 44 (1), 241–247 (1976).CrossRefGoogle Scholar
  109. 109.
    D. Hillel, Introduction to Environmental Soil Physics (Elsevier, Amsterdam, 2004).Google Scholar
  110. 110.
    C. G. Hopkins, “A plea for the scientific basis for the division of soil particles in mechanical analysis,” US Dep. Agric., Div. Chem. Bull. 56, 64–66 (1899).Google Scholar
  111. 111.
    F. Hu, C. Xu, H. Li, S. Li, Z. Yu, Y. Li, and X. He, “Particles interaction forces and their effects on soil aggregates breakdown Feinan,” Soil Tillage Res. 147, 1–9 (2015).CrossRefGoogle Scholar
  112. 112.
    C. R. Hunter and A. J. Busacca, “Dispersion of three andic soils by ultrasonic vibration,” Soil Sci. Soc. Am. J. 53 (4), 1299–1302 (1989).CrossRefGoogle Scholar
  113. 113.
    ISO 11277:2009: Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation (International Organization for Standardization, Geneva, 2009).Google Scholar
  114. 114.
    IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015).Google Scholar
  115. 115.
    M. L. Jackson, Soil Chemical Analysis-Advanced Course (M.L. Jackson Publ., Madison, WI, 1969).Google Scholar
  116. 116.
    M. L. Jackson, L. D. Whittig, and R. P. Pennington, “Segregation procedure for the mineralogical analysis of soils,” Soil Sci. Soc. Am. Proc. 14, 77–81 (1950).CrossRefGoogle Scholar
  117. 117.
    P. M. Jardine, J. F. McCarthy, and N. L. Weber, “Mechanisms of dissolved organic carbon adsorption on soil,” Soil Sci. Soc. Am. J. 53 (5), 1378–1385 (1989).CrossRefGoogle Scholar
  118. 118.
    J. D. Jastrow and R. M. Miller, “Soil aggregate stabilization and carbon sequestration: feedbacks through organomineral associations,” in Soil Processes and the Carbon Cycle, Ed. by R. Lal, J. M. Kimble, R. F. Follett, and B. A. Stewart (CRC Press, Boca Raton, Fl., 1997), Vol. 11, pp. 207–223.Google Scholar
  119. 119.
    Z. Jiang and L. Liu, “A pretreatment method for grain size analysis of red mudstones,” Sediment. Geol. 241 (1–4), 13–21 (2011).CrossRefGoogle Scholar
  120. 120.
    A. F. Joseph and F. J. Martin, “The determination of clay in heavy soils,” J. Agric. Sci. 11 (3), 293–303 (1921).CrossRefGoogle Scholar
  121. 121.
    M. Kaiser and A. Asefaw Berhe, “How does sonication affect the mineral and organic constituents of soil aggregates?—A review,” J. Plant Nutr. Soil Sci. 177 (4), 479–495 (2014).CrossRefGoogle Scholar
  122. 122.
    M. Kaiser, A. A. Berhe, M. Sommer, and M. Kleber, “Application of ultrasound to disperse soil aggregates of high mechanical stability,” J. Plant Nutr. Soil Sci. 175 (4), 521–526 (2012).CrossRefGoogle Scholar
  123. 123.
    I. Kanno and S. Arimura, “Dispersion of humic allophane soils with supersonic vibration,” Soil Sci. Plant Nutr. 13 (6), 165–170 (1967).CrossRefGoogle Scholar
  124. 124.
    B. A. Keen, “Mechanical analysis: national and international,” Soil Res. 1 (1), 43–49 (1928).Google Scholar
  125. 125.
    W. D. Kemper and W. S. Chepil, “Size distribution of aggregates,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, Agronomy Monograph 9.1 (Soil Science Society of America, Madison, WI, 1965), Ch. 39.Google Scholar
  126. 126.
    R. Kerry, B. G. Rawlins, M. A. Oliver, and A. M. Lacinska, “Problems with determining the particle size distribution of chalk soil and some of their implications,” Geoderma 152 (3–4), 324–337 (2009).CrossRefGoogle Scholar
  127. 127.
    R. Kiem and I. Kögel-Knabner, “Refractory organic carbon in particle-size fractions of arable soils II: organic carbon in relation to mineral surface area and iron oxides in fractions <6 μm,” Org. Geochem. 33 (12), 1699–1713 (2002).CrossRefGoogle Scholar
  128. 128.
    V. J. Kilmer and L. T. Alexander, “Methods of making mechanical analyses of soils,” Soil Sci. 68 (1), 15–24 (1949).CrossRefGoogle Scholar
  129. 129.
    M. Kleber, K. Eusterhues, M. Keiluweit, C. Mikutta, R. Mikutta, and P. S. Nico, “Mineral–organic associations: formation, properties, and relevance in soil environments,” Adv. Agron. 130 (1), 1–140 (2015).CrossRefGoogle Scholar
  130. 130.
    M. Kleber, P. Sollins, and R. Sutton, “A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces,” Biogeochemistry 85 (1), 9–24 (2007).CrossRefGoogle Scholar
  131. 131.
    G. W. Kunze and J. Dixon, “Pretreatment for mineralogical analysis,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, SSSA Book Series 5.1, Ed. by A. Klute (Soil Science Society of America, Madison, WI, 1986).Google Scholar
  132. 132.
    J. Lehmann, J. Kinyangi, and D. Solomon, “Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms,” Biogeochemistry 85 (1), 45–57 (2007).CrossRefGoogle Scholar
  133. 133.
    M. Litaor, “The influence of eolian dust on the genesis of alpine soils in the Front Range, Colorado,” Soil Sci. Soc. Am. J. 51 (1), 142–147 (1987).CrossRefGoogle Scholar
  134. 134.
    R. J. Loch and J. L. Foley, “Measurement of aggregate breakdown at the rain: comparison with tests of water stability and relationship with field measurements of infiltration,” Aust. J. Soil. Res. 32, 701–720 (1994).CrossRefGoogle Scholar
  135. 135.
    J. L. Loizeau, D. Arbouille, S. Santiago, and J. P. Vernet, “Evaluation of wide-range laser diffraction grain size analyzer for use with sediments,” Sedimentology 41, 353–361 (1994).CrossRefGoogle Scholar
  136. 136.
    P. J. Loveland and W. R. Whalley, “Particle size analysis,” in Soil and Environmental Analysis: Physical Methods, Revised, and Expanded, Ed. by K. A. Smith and C. E. Mullins (CRC Pres, Boca Raton, Fl., 2001).Google Scholar
  137. 137.
    R.T. Martin, “Calcium oxalate formation in soils from hydrogen perozide treatment,” Soil Sci. 77 (2), 143–146 (1954).CrossRefGoogle Scholar
  138. 138.
    A. E. Matar and T. Doubleimy, Note on Proposed Method for the Mechanical Analysis of Gypsiferous Soils (Arab Center for the Studies of Arid Zones and Dry Lands, Damascus, 1978).Google Scholar
  139. 139.
    M. D. Matthews, “The effect of pretreatment on size analysis,” in Principles, Methods and Application of Particle Size Analysis (Cambridge University Press, Cambridge, 2007).Google Scholar
  140. 140.
    H. Mayer, A. Mentler, M. Papakyriacou, N. Rampazzo, Y. Marxer, and W. E. H. Blum, “Influence of vibration amplitude on the ultrasonic dispersion of soils,” Int. Agrophys. 16 (1), 53–60 (2002).Google Scholar
  141. 141.
    A. P. Mazurak, “Effect of gaseous phase on water-stable synthetic aggregates,” Soil Sci. 69 (2), 135–148 (1950).CrossRefGoogle Scholar
  142. 142.
    W. McLean, “Effect of hydrogen peroxide on soil organic matter,” J. Agric. Sci. 21 (2), 251–261 (1931).CrossRefGoogle Scholar
  143. 143.
    W. McLean, “The nature of soil organic matter as shown by the attack of hydrogen peroxide,” J. Agric. Sci. 21 (4), 595–611 (1931).CrossRefGoogle Scholar
  144. 144.
    L. P. Meier and A. P. Menegatti, “A new, efficient, one-step method for the removal of organic matter from clay-containing sediments,” Clay Miner. 32, 557–563 (1997).CrossRefGoogle Scholar
  145. 145.
    A. P. Menegatti, G. L. Frueh-Green, and P. Stille, “Removal of organic matter by disodium peroxodisulphate; effects on mineral structure, chemical composition and physicochemical properties of some clay minerals,” Clay Miner. 4 (2), 247–257 (1999).CrossRefGoogle Scholar
  146. 146.
    A. Mentler, J. Schomakers, S. Kloss, S. Zechmeister-Boltenstern, R. Schuller, and H. Mayer, “Calibration of ultrasonic power output in water, ethanol and sodium polytungstate,” Int. Agrophys. 31 (4), 582–588 (2017).CrossRefGoogle Scholar
  147. 147.
    E. H. Mikhail and G. P. Briner, “Routine particle size analysis of soils using sodium hypochlorite and ultrasonic dispersion,” Soil Res. 16 (2), 241–244 (1978).CrossRefGoogle Scholar
  148. 148.
    R. Mikutta, M. Kleber, K. Kaiser, and R. Jahn, “Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate,” Soil Sci. Soc. Am. J. 69 (1), 120–135 (2005).CrossRefGoogle Scholar
  149. 149.
    F. A. Mileti, G. Langella, M. A. Prins, S. Vingiani, and F. Terribile, “The hidden nature of parent material in soils of Italian mountain ecosystems,” Geoderma 207, 291–309 (2013).CrossRefGoogle Scholar
  150. 150.
    C. Moni, D. Derrien, P. J. Hatton, B. Zeller, and M. Kleber, “Density fractions versus size separates: does physical fractionation isolate functional soil compartments?” Biogeosciences 9, 5181–5197 (2012).CrossRefGoogle Scholar
  151. 151.
    M. Murray, “Is laser particle size determination possible for carbonate rick lake sediments?” J. Paleolimnol. 27, 173–183 (2002).CrossRefGoogle Scholar
  152. 152.
    A. Nemes and W. J. Rawls, “Soil texture and particle-size distribution as input to estimate soil hydraulic properties,” Dev. Soil Sci. 30, 47–70 (2004).Google Scholar
  153. 153.
    K. Norrish and K. G. Tiller, “Subplasticity in Australian soils. V. Factors involved and techniques of dispersion,” Aust. J. Soil Res. 14 (3), 273–289 (1976).CrossRefGoogle Scholar
  154. 154.
    P. F. North, “Towards an absolute measurement of soil structural stability using ultrasound,” J. Soil Sci. 27 (4), 451–459 (1976).CrossRefGoogle Scholar
  155. 155.
    J. M. Oades and A. G. Waters, “Aggregate hierarchy in soils,” Aust. J. Soil Res. 29 (6), 815–825 (1991).CrossRefGoogle Scholar
  156. 156.
    A. Olmstead, L. T. Alexander, and H. E. Middleton, “A pipette method of mechanical analysis of soils, based on improved dispersion procedure,” US Dep. Agric. Tech. Bull. 170, (1930).Google Scholar
  157. 157.
    M. J. Pearson, S. E. Monteith, R. R. Ferguson, C. T. Hallmark, W. H. Hudnall, H. C. Monger, T. G. Reinsch, and L. T. West, “A method to determine particle size distribution in soils with gypsum,” Geoderma 237, 318–324 (2015).CrossRefGoogle Scholar
  158. 158.
    K. Pennell, L. M. Abriola, and S. A. Boyd, “Surface area of soil organic matter reexamined,” Soil Sci. Soc. Am. J. 59 (4), 1012–1018 (1995).CrossRefGoogle Scholar
  159. 159.
    E. Perfect and B. D. Kay, “Applications of fractals in soil and tillage research: a review,” Soil Tillage Res. 36 (1–2), 1–20 (1995).CrossRefGoogle Scholar
  160. 160.
    E. Perfect and B. D. Kay, “Fractal theory applied to soil aggregation,” Soil Sci. Soc. Am. J. 55 (6), 1552–1558 (1991).CrossRefGoogle Scholar
  161. 161.
    R. Pini and G. Guidi, “Determination of soil microaggregates with laser light scattering,” Commun. Soil Sci. Plant Anal. 20 (1–2), 47–59 (1989).CrossRefGoogle Scholar
  162. 162.
    C. A. Piper, Soil and Plant Analysis (Wiley, New York, 1950).Google Scholar
  163. 163.
    I. Plaza, A. Ontiveros-Ortega, J. Calero, and V. Aranda, “Implication of zeta potential and surface free energy in the description of agricultural soil quality: effect of different cations and humic acids on degraded soils,” Soil Tillage Res. 146, 148–158 (2015).CrossRefGoogle Scholar
  164. 164.
    R. Protz and J. St. Arnaud, “The evaluation of four pretreatments used in particle-size distribution analyses,” Can. J. Soil Sci. 44, 345–351 (1964).CrossRefGoogle Scholar
  165. 165.
    E. D. Rivers, C. T. Hallmark, L. T. West, and L. R. Drees, “A technique for rapid removal of gypsum from soil samples,” Soil Sci. Soc. Am. J. 46, 1338–1340 (1982).CrossRefGoogle Scholar
  166. 166.
    G. W. Robinson, “Note on mechanical analysis of humus soils,” J. Agric. Sci. 12, 287–291 (1922).CrossRefGoogle Scholar
  167. 167.
    G. W. Robinson and J. O. Jones, “A method for determining the degree of humification of soil organic matter,” J. Agric. Sci. 15 (1), 26–29 (1925).CrossRefGoogle Scholar
  168. 168.
    S. S. Rousseva, “Data transformations between soil texture schemes,” Eur. J. Soil Sci. 48, 749–758 (1997).CrossRefGoogle Scholar
  169. 169.
    D. Sarkar and A. Haldar, Physical and Chemical Methods in Soils Analysis. Fundamental Concepts of Analytical Chemistry and Instrumental Techniques (New Age International, New Delhi, 2005).Google Scholar
  170. 170.
    K. E. Saxton and W. J. Rawls, “Soil water characteristic estimates by texture and organic matter for hydrologic solutions,” Soil Sci. Soc. Am. J. 70 (5), 1569–1578 (2006).CrossRefGoogle Scholar
  171. 171.
    M. W. I. Schmidt, C. Rumpel, and I. Kögel-Knabner, “Evaluation of an ultrasonic dispersion procedure to isolate primary organomineral complexes from soils,” Eur. J. Soil Sci. 50 (1), 87–94 (1999).CrossRefGoogle Scholar
  172. 172.
    P. Schulte, F. Lehmkuhl, F. Steininger, D. Loibl, G. Lockot, J. Protze, P. Fischer, and G. Stauch, “Influence of HCl pretreatment and organo-mineral complexes on laser diffraction measurement of loess-paleosol sequences,” Catena 137, 392–405 (2016).CrossRefGoogle Scholar
  173. 173.
    H. R. Schulten and P. Leinweber, “New insights into organic-mineral particles: composition, properties and models of molecular structure,” Biol. Fertil. Soils 30 (5–6), 399–432 (2000).CrossRefGoogle Scholar
  174. 174.
    H. R. Schulten, P. Leinweber, and C. Sorge, “Composition of organic matter in particle-size fractions of an agricultural soil,” J. Soil Sci. 44 (4), 677–691 (1993).CrossRefGoogle Scholar
  175. 175.
    S. M. Shevchenko and G. W. Bailey, “Non-bonded organo-mineral interactions and sorption of organic compounds on soil surfaces: a model approach,” J. Mol. Struct.: THEOCHEM 422 (1), 259–270 (1998).CrossRefGoogle Scholar
  176. 176.
    L. G. Shield and M. W. Meyer, “Carbonate clay: measurement and relationship to clay distribution and cation-exchange capacity,” Soil Sci. Soc. Am. J. 28 (3), 416–419 (1964).CrossRefGoogle Scholar
  177. 177.
    R. W. Simonson, “Sources of particle-size limits for soil separates,” Soil Horiz. 40 (2), 50–58 (1999).CrossRefGoogle Scholar
  178. 178.
    J. M. Skopp, “Physical properties of primary particles,” in Soil Physics Companion, Ed. by A. W. Warrick (CRC Press, Boca Raton, Fl., 2002).Google Scholar
  179. 179.
    M. R. Soares, L. R. Alleoni, P. Vidal-Torrado, and M. Cooper, “Mineralogy and ion exchange properties of the particle size fractions of some Brazilian soils in tropical humid areas,” Geoderma 125 (3), 355–367 (2005).CrossRefGoogle Scholar
  180. 180.
    Staff Soil Survey Keys to Soil Taxonomy (USDA National Resources Conservation Service, National Soil Survey Center, Lincoln, 2010).Google Scholar
  181. 181.
    G. B. Stirk, “Expression of soil aggregate distributions,” Soil Sci. 86 (3), 133–135 (1958).CrossRefGoogle Scholar
  182. 182.
    Stuff Soil Survey Division, Soil Survey Manual, USDA Handbook 18 (U.S. Government Publishing Office, Washington, DC, 1993).Google Scholar
  183. 183.
    M. E. Sumner, Handbook of Soil Science (CRC Press, Boca Raton, Fl., 1999).Google Scholar
  184. 184.
    D. Sun, J. Bloemendal, D. K. Rea, J. Vandenberghe, F. Jiang, Z. An, and R. Su, “Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of sedimentary components,” Sediment. Geol. 152, 262–267 (2002).CrossRefGoogle Scholar
  185. 185.
    O. Tamm, “Determination of the inorganic components of the gel-complex in soils,” Medd. Stat. Skogförsöd. 19, 387–404 (1922).Google Scholar
  186. 186.
    H. Taubner, B. Roth, and R. Tippkötter, “Determination of soil texture: comparison of the sedimentation method and the laser-diffraction analysis,” J. Plant Nutr. Soil Sci. 172 (2), 161–171 (2009).CrossRefGoogle Scholar
  187. 187.
    A. A. Theisen, D. D. Evans, and M. E. Harward, “Effect of dispersion techniques on mechanical analysis of Oregon soils,” Agric. Exp. Stat. Oregon State Univ. Tech. Bull. 104, 1–18 (1968).Google Scholar
  188. 188.
    J. M. Tisdall and J. M. Oades, “Organic matter and water-stable aggregates in soils,” J. Soil Sci. 33, 141–163 (1982).CrossRefGoogle Scholar
  189. 189.
    K. U. Totsche, W. Amelung, M. H. Gerzabek, G. Guggenberger, E. Klumpp, C. Knief, L. Lehndorff, R. Mikutta, S. Peth, A. Prechtel, N. Ray, and I. Kögel-Knaber, “Microaggregates in soils,” J. Plant Nutr. Soil Sci. 18 (1), 104–136 (2018).CrossRefGoogle Scholar
  190. 190.
    E. Troell, “The use of sodium hypobromite for the oxidation of organic matter in the mechanical analysis of soils,” J. Agric. Sci. 21 (3), 476–483 (1931).CrossRefGoogle Scholar
  191. 191.
    E. Truog, J. R. Taylor, R. W. Pearson, M. E. Weeks, and R. W. Simonson, “Procedure for special type of mechanical and mineralogical soil analysis,” Soil Sci. Soc. Am. J. 1, 101–112 (1937).CrossRefGoogle Scholar
  192. 192.
    D. L. Turcotte, “Fractals and fragmentation,” J. Geophys. Res.: Solid Earth 91 (2), 1921–1926 (1986).CrossRefGoogle Scholar
  193. 193.
    S. W. Tyler and S. W. Wheatcraft, “Fractal scaling of soil particle-size distributions: analysis and limitations,” Soil Sci. Soc. Am. J. 56, 362–369 (1992).CrossRefGoogle Scholar
  194. 194.
    E. H. Tyner, “The use of sodium metaphosphate for dispersion of soils for mechanical analysis,” Soil Sci. Soc. Am., Proc. 4, 106–113 (1940).Google Scholar
  195. 195.
    S. Uziak, “The mineral composition of clay fractions from a fossil loess soil,” Pol. J. Soil Sci. 10 (2), 157–164 (1977).Google Scholar
  196. 196.
    T. Vaasma, “Grain-size analysis of lacustrine sediments: a comparison of pre-treatment methods,” Est. J. Ecol. 57 (4), 231–243 (2008).CrossRefGoogle Scholar
  197. 197.
    C. H. M. van Bavel, “Mean-weight diameter of soil aggregates as a statistical index of aggregation,” Soil Sci. Soc. Am. J. 14, 20–23 (1950.CrossRefGoogle Scholar
  198. 198.
    H. van Olphen, An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists, and Soil Scientists (Wiley, New York, 1977).Google Scholar
  199. 199.
    J. Vandenberghe, “Grain size of fine-grained windblown sediment: a powerful proxy for process identification,” Earth-Sci. Rev. 121, 18–30 (2013).CrossRefGoogle Scholar
  200. 200.
    J. Vieillefon, “Contribution to the improvement of analysis of gypsiferous soils,” in Management of Gypsiferous Soils (Food and Agriculture Organization, Rome, 1997).Google Scholar
  201. 201.
    M. von Lützow, I. Kögel-Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner, “SOM fractionation methods: relevance to functional pools and to stabilization mechanisms,” Soil Biol. Biochem. 39 (9), 2183–2207 (2007).CrossRefGoogle Scholar
  202. 202.
    M. von Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa, “Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review,” Eur. J. Soil Sci. 57 (4), 426–445 (2006).CrossRefGoogle Scholar
  203. 203.
    E. K. Walton, W. E. Stephens, and M. S. Shawa, “Reading segmented grain-size curves,” Geol. Mag. 117 (6), 517–524 (1980).CrossRefGoogle Scholar
  204. 204.
    Y. J. Wang, C. B. Li, W. Wang, D. M. Zhou, R. K. Xu, and S. P. Friedman, “Wien effect determination of adsorption energies between heavy metal ions and soil particles,” Soil Sci. Soc. Am. J. 72 (1), 56–62 (2008).CrossRefGoogle Scholar
  205. 205.
    W. Weipeng, L. Jianli, Z. Bingzi, Z. Jiabao, L. Xiaopeng, and Y. Yifan, “Critical evaluation of particle size distribution models using soil data obtained with a laser diffraction method,” PloS One 10 (4), 1–18 (2015).CrossRefGoogle Scholar
  206. 206.
    G. J. Weltje and M. A. Prins, “Genetically meaningful decomposition of grain-size distributions,” Sediment. Geol. 202 (3), 409–424 (2007).CrossRefGoogle Scholar
  207. 207.
    R. Westerhof, P. Buurman, C. van Griethuysen, M. Ayarza, L. Vilela, and W. Zech, “Aggregation studied by laser diffraction in relation to plowing and liming in the Cerrado region in Brazil,” Geoderma 90 (3–4), 277–290 (1999).CrossRefGoogle Scholar
  208. 208.
    J. H. M. Wösten, Y. A. Pachepsky, and W. J. Rawls, “Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics,” J. Hydrol. 251 (3), 123–150 (2001).CrossRefGoogle Scholar
  209. 209.
    F. Yang, G. L. Zhang, F. Yang, and R. M. Yang, “Pedogenetic interpretations of particle-size distribution curves for an alpine environment,” Geoderma 282, 9–15 (2016).CrossRefGoogle Scholar
  210. 210.
    G. Yuan, M. Soma, H. Seyama, B. K. G. Theng, L. M. Lavkulich, and T. Takamatsu, “Assessing the surface composition of soil particles from some podzolic soils by X-ray photoelectron spectroscopy,” Geoderma 86 (3), 169–181 (1998).CrossRefGoogle Scholar
  211. 211.
    Z. Yutong, X. Qing, and L. Shenggao, “Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China),” Environ. Sci. Pollut. Res. 23 (14), 14600–14607 (2016).CrossRefGoogle Scholar
  212. 212.
    H. Zhang and P. R. Bloom, “Dissolution kinetics of hornblende in organic acid solutions,” Soil Sci. Soc. Am. J. 63 (4), 815–822 (1999).CrossRefGoogle Scholar
  213. 213.
    T. M. Zobeck, “Rapid soil particle size analyses using laser diffraction,” Appl. Eng. Agric. 20 (5), 633–639 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Yudina
    • 1
    • 2
  • D. S. Fomin
    • 1
    • 2
  • A. D. Kotelnikova
    • 1
    • 2
  • E. Yu. Milanovskii
    • 1
    • 2
  1. 1.Dokuchaev Soil Science InstituteMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations