Advertisement

Eurasian Soil Science

, Volume 51, Issue 11, pp 1317–1325 | Cite as

Biological Characteristics and Concentrations of Extractable Fe, Al, and Si Compounds in Spruce Rhizosphere in Podzolic Soil

  • T. A. Sokolova
  • I. I. Tolpeshta
  • L. V. Lysak
  • Yu. A. Zavgorodnyaya
  • T. S. Chalova
  • M. M. Karpukhin
  • Yu. G. Izosimova
SOIL CHEMISTRY
  • 7 Downloads

Abstract

Some biological properties and concentrations of extractable Fe, Al, and Si compounds in the samples of the AOEL horizon of podzolic soil taken in five replicates from the rhizosphere of 15- to 20-year-old spruce and from the nonrhizosphere soil are discussed. The soil mass of the rhizosphere is characterized by a significantly higher total number of bacteria, more abundant and diverse saprotrophic bacterial complex, greater length of fungal mycelium, and higher content of benzenecarboxylic acids dominated by benzoic acid in comparison with the nonrhizosphere soil. The soil mass of the rhizosphere and the fraction of 1–5 µm isolated from it are also characterized by significantly higher concentrations of Fe and Al extracted by the Tamm and Bascomb reagents because of the accumulation of Fe-organic and Al-organic complexes. For extractable Al compounds in the rhizosphere, this finding is confirmed by the high coefficient of correlation between the amount of Al in the extracts and the Corg content in the bulk soil mass and in the fraction 1–5 µm. Such a correlation is absent in the nonrhizosphere soil. The content of iron compounds extracted by the Mehra–Jackson reagent from the rhizosphere and nonrhizosphere soils is significantly higher than that extracted by the Tamm and Bascomb reagents; in the nonrhizosphere samples, it is significantly higher than in the rhizosphere. This difference can be explained by the fact that the content of Fe oxides and hydroxides minerals decreased in the soil mass of the rhizosphere due to more active dissolution processes under the conditions of more acid medium and higher concentration of organic ligands, so that the mobilized Fe enters Fe–organic complexes.

Keywords:

benzenecarboxylic acids podzolic soils Dystric Albic Planosol forest ecosystems 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 14-04-00530A.

REFERENCES

  1. 1.
    R. Kh. Aidinyan, Extraction of Clay from Soils: Brief Instruction (Giprovodkhoz, Moscow, 1960) [in Russian].Google Scholar
  2. 2.
    Yu. N. Blagoveshchenskii, E. A. Dmitriev, and V. P. Samsonova, Use of Nonparametric Methods in Soil Science (Moscow State Univ., Moscow, 1985) [in Russian].Google Scholar
  3. 3.
    V. I. Vernadsky, The Biosphere (Nauka, Moscow, 1990), Vol. 5, pp. 7–105.Google Scholar
  4. 4.
    Yu. N. Vodyanitskii, Chemistry and Mineralogy of Soil Iron (Dokuchaev Soil Science Inst., Moscow, 2002) [in Russian].Google Scholar
  5. 5.
    Yu. N. Vodyanitskii and V. V. Dobrovol’skii, Iron Minerals and Heavy Metals in Soils (Dokuchaev Soil Science Inst., Moscow, 1998) [in Russian].Google Scholar
  6. 6.
    L. A. Vorob’eva, Chemical Analysis of Soils (Moscow State Univ., Moscow, 1998) [in Russian].Google Scholar
  7. 7.
    N. I. Gorbunov and I. G. Tsyurupa, “On the uneven concentration of solutions extracted from clay minerals and soils,” Pochvovedenie, No. 3, 166–171 (1947).Google Scholar
  8. 8.
    D. G. Zvyagintsev, I. P. Bab’eva, and G. M. Zenova, Soil Biology (Moscow State Univ., Moscow, 2005) [in Russian].Google Scholar
  9. 9.
    S. V. Zonn, Iron in Soils (Nauka, Moscow, 1982) [in Russian].Google Scholar
  10. 10.
    L. O. Karpachevskii and M. N. Stroganova, “Soils of the Central Forest Nature Reserve and their ecological assessment,” in Dynamics and Structure of Soils and Modern Soil Processes (Moscow, 1987), pp. 10–30.Google Scholar
  11. 11.
    L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  12. 12.
    L. V. Lysak, T. G. Dobrovol’skaya, and I. N. Skvortsova, Evaluation of Bacterial Diversity of Soils and Identification of Soil Bacteria (MAKS Press, Moscow, 2003) [in Russian].Google Scholar
  13. 13.
    Manual on Soil Biochemistry and Microbiology, Ed. by D. G. Zvyagintsev (Moscow State Univ., Moscow, 1991) [in Russian].Google Scholar
  14. 14.
    Yu. L. Meshalkina and V. P. Samsonova, Manual on Mathematical Statistics in Soil Science (MAKS Press, Moscow, 2008) [in Russian].Google Scholar
  15. 15.
    O. A. Nesterenko, E. I. Kvasnikov, and E. M. Nogina, Nocardia- and Corynebacterium-Like Bacteria (Naukova Dumka, Kiev, 1985) [in Russian].Google Scholar
  16. 16.
    D. S. Orlov, Soil Chemistry (Moscow State Univ., Moscow, 1992; Oxford and IBH, New Delhi, 1992).Google Scholar
  17. 17.
    D. S. Orlov, I. N. Lozanovskaya, and P. D. Popov, Soil Organic Matter and Organic Fertilizers (Moscow State Univ., Moscow, 1985) [in Russian].Google Scholar
  18. 18.
    Regulatory Role of Soils in Functioning of Taiga Ecosystems (Nauka, Moscow, 2002), pp. 51–60.Google Scholar
  19. 19.
    T. A. Sokolova, I. I. Tolpeshta, L. V. Lysak, and T. S. Chalova, “Specificity of some soil characteristics in the rhizosphere of spruce in the AEL horizon of podzolic soil,” Moscow Univ. Soil Sci. Bull. 70, 139–146 (2015).CrossRefGoogle Scholar
  20. 20.
    V. O. Targulian and T. A. Sokolova, Soil as a biotic/abiotic natural system: a reactor, memory, and regulator of biospheric interactions,” Eurasian Soil Sci. 29, 30-41 (1996).Google Scholar
  21. 21.
    V. O. Targul’yan, A. D. Fokin, T. A. Sokolova, and S. A. Shoba, “Experimental studies of pedogenesis: opportunities, limits, and prospects,” Pochvovedenie, No. 1, 15–23 (1989.Google Scholar
  22. 22.
    V. O. Targulian and M. I. Gerasimova, Global Reference Base for Soil Resources as the Basis for International Classification and Correlation of Soils (KMK, Moscow, 2007) [in Russian].Google Scholar
  23. 23.
    I. I. Tolpeshta and T. A. Sokolova, “Extractable aluminum compounds in soils of the southern taiga (soils of the Central Forest Reserve as an example),” Eurasian Soil Sci. 43, 893–904 (2010).CrossRefGoogle Scholar
  24. 24.
    I. I. Tolpeshta, T. A. Sokolova, E. Bonifacio, and G. Falcone, “Pedogenic chlorites in podzolic soils with different intensities of hydromorphism: origin, properties, and conditions of their formation,” Eurasian Soil Sci. 43, 777–787 (2010).CrossRefGoogle Scholar
  25. 25.
    J. M. Arocena, K. R. Glowa, H. B. Massicotte, and L. Lavkulich, “Chemical and mineral composition of ectomyccorhizosphere soils of subalpine fir (Abies lasiocarpa (Hook) Nutt.) in the E horizon of a luvisol,” Can. J. Soil Sci. 79, 25–35 (1999).CrossRefGoogle Scholar
  26. 26.
    J. B. Brant, D. D. Myrold, and E. W. Sulzman, “Root controls on soil microbial community structure in forest soils,” Oecologia 148, 650–659 (2006).CrossRefGoogle Scholar
  27. 27.
    C. Collignon, J. Ranger, and M. P. Turpault, “Seasonal dynamics of Al- and Fe-bearing secondary minerals in an acid forest soil: influence of Norway spruce roots (Picea abies (L.) Karst.),” Eur. J. Soil Sci. 63, 592–602 (2012).CrossRefGoogle Scholar
  28. 28.
    F. Courchesne and G. R. Gobran, “Mineralogical variations of bulk and rhizosphere soils from a north spruce,” Soil Sci. Soc. Am. J. 61, 1245–1249 (1997).CrossRefGoogle Scholar
  29. 29.
    Y. Dessaux, P. Hinsinger, and P. Lemanceau, “Rhizosphere: so many achievements and even more challenges,” Plant Soil 321, 1–3 (2009).CrossRefGoogle Scholar
  30. 30.
    R. Dinesh, V. Srinivasan, S. Hamza, V. A. Parthasarathy, and K. C. Aipe, “Physico-chemical, biochemical and microbial properties of the rhizospheric soils of tree species used as supports for black pepper cultivation in the humid tropics,” Geoderma 158, 252–258 (2010).CrossRefGoogle Scholar
  31. 31.
    P. J. Gregory, “Roots, rhizosphere and soil: the rout to a better understanding of soil science,” Eur. J. Soil Sci. 57, 2–12 (2006).CrossRefGoogle Scholar
  32. 32.
    G. R. Gobran, S. Clegg, and F. Courchesne, “Rhizosphere processes influencing the biogeochemistry of forest ecosystems,” Biogeochemistry 42, 107–120 (1998).CrossRefGoogle Scholar
  33. 33.
    R. P. Griffits, J. E. Baham, and B. A. Caldwell, “Soil solution chemistry of ectomycorrhizal mats in forest soil,” Soil Biol. Biochem. 26 (3), 331–337 (1994).CrossRefGoogle Scholar
  34. 34.
    L. Hiltner, “Űber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbacteriologie unter besonderer Berűcksichtigung der Grűndűngung und Brache,” Arb. Dtsch. Landwirtsch. Ges. 98, 59–78 (1904).Google Scholar
  35. 35.
    R. M. Johnson and K. S. Pregitzer, “Concentration of sugars, phenolic acids, and amino acids in forest soils exposed to elevated atmospheric CO2 and O3,” Soil Biol. Biochem. 39, 3159–3166 (2007).CrossRefGoogle Scholar
  36. 36.
    D. Jones, P. Dennis, A. Owen, et al., “Organic acid behavior in soils—misconceptions and knowledge gaps,” Plant Soil 248, 31–41 (2003).CrossRefGoogle Scholar
  37. 37.
    P. Marschner, C. H. Yang, R. Lieberei, and D. E. Crowley, “Soil and plant specific effects on bacterial community composition in the rhizosphere,” Soil Biol. Biochem. 33, 1437–1455 (2001).CrossRefGoogle Scholar
  38. 38.
    M. Nie, X.-D. Zhang, J.-Q. Wang, L.-F. Jiang, J. Yang, Z.-X. Quan, X.-H. Cui, C.-M. Fang, and B. Li, “Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization,” Soil Biol. Biochem. 41, 2535–2542 (2009).CrossRefGoogle Scholar
  39. 39.
    R. L. Parfitt and J. M. Kimble, “Conditions for formation of allophane in soils,” Soil Sci. Soc. Am. J. 53 (5), 971–977 (1989).CrossRefGoogle Scholar
  40. 40.
    A. Sandnes, T. D. Eldhuset, and G. Wollebæk, “Organic acids in root exudates and soil solution of Norway spruce and silver birch,” Soil Biol. Biochem. 37, 259–269 (2005).CrossRefGoogle Scholar
  41. 41.
    U. Schwertmann, “Occurrence and formation of iron oxides in various pedoenviroments,” in Iron in Soil and Clay Minerals (Reidel, Dordrecht, 1988), pp. 267–308.Google Scholar
  42. 42.
    S. Sinha, R. E. Masto, L. C. Ram, V. A. Selvi, N. K. Srivastava, R. C. Tripathi, and G. Joshy, “Rhizosphere soil microbial index of tree species in a coal-mining ecosystem,” Soil Biol. Biochem. 41, 1824–1832 (2009).CrossRefGoogle Scholar
  43. 43.
    M.-P. Turpault, G. R. Gobran, and P. Bonnaud, “Temporal variations of rhizosphere and bulk soil chemistry in a Douglas fir stand,” Geoderma 7, 490–496 (2007).CrossRefGoogle Scholar
  44. 44.
    P. A. W. van Hees, D. L. Godbold, G. Jentschke, and D. L. Jones, “Impact of ectomycorrhizas on the concentration and biodegradation of simple organic acids in a forest soil,” Eur. J. Soil Sci. 54, 697–706 (2003).CrossRefGoogle Scholar
  45. 45.
    R. Wagai, L. M. Mayer, K. Kitayama, and Y. Shirato, “Association of organic matter with iron and aluminum across a range of soils determined via selective dissolution techniques coupled with dissolved nitrogen analysis,” Biogeochemistry 112, 95–109 (2013).CrossRefGoogle Scholar
  46. 46.
    C. Zhang, G. Liu, S. Xue, and Z. Song, “Rhizosphere soil microbial activity under different vegetation types on the Loess Plateau, China,” Geoderma 161, 115–125 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. A. Sokolova
    • 1
  • I. I. Tolpeshta
    • 1
  • L. V. Lysak
    • 1
  • Yu. A. Zavgorodnyaya
    • 1
  • T. S. Chalova
    • 1
  • M. M. Karpukhin
    • 1
  • Yu. G. Izosimova
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations