Advertisement

Eurasian Soil Science

, Volume 51, Issue 11, pp 1348–1356 | Cite as

Color Diagnostics of Soil Horizons (by the Example of Soils from Moscow Region)

  • N. P. Kirillova
  • T. M. Sileva
  • T. Yu. Ul’yanova
  • I. E. Smirnova
  • A. S. Ul’yanova
  • E. K. Burova
SOIL PHYSICS

Abstract—

Soil color is the most important diagnostic feature in soil studies, though still being determined mainly qualitatively. Uncertainty in color determination can be eliminated by the transition to the precise color estimate in the CIELAB space coordinates. The results of color study for 347 soil samples are presented. These samples were obtained from the area of 274 ha in the southern taiga landscapes. The possibility to differentiate between twelve main horizons according to their color characteristics in both wet and dry states is shown for ten soil types (podzolic, bog podzolic, lowmoor peat bog, soddy, soddy gley, acid soddy alluvial, acid meadow alluvial, meadow-bog alluvial, silty mucky gley alluvial, and silty-peat bog alluvial soils). The color characteristics of soil horizons correlate with the landscape positions of the soils: watershed slopes, terraces, ravines, backswamps, and floodplain of the Klyazma River. Among three optical indices (L*, a*, and b*), only lightness (L*) correlates reliably with the horizons distinguished in the Classification and Diagnostics of Soils of the Soviet Union (1977), Classification and Diagnostic System of Russian Soils (2004–2008), and the World Reference Base for Soil Resources (2014).

Keywords:

CIELAB databases Munsell system soil classification flatbed scanner spectrophotometer 

Notes

REFERENCES

  1. 1.
    R. F. Baibekov, V. I. Savich, D. N. Egorov, Khesam Mousa, and Kaba Rami, “Evaluation of soil color in field conditions using Gretag Macbeth Eye-one Photo device,” Izv. Timiryazevsk. S-kh. Akad., No. 4, 23–28 (2007).Google Scholar
  2. 2.
    Yu. N. Vodyanitskii, A.A. Vasil’ev, and V.Yu. Gilev, “Iron minerals in soils on red-earth deposits in the Cis-Ural region,” Eurasian Soil Sci. 40, 432–444 (2007).CrossRefGoogle Scholar
  3. 3.
    Yu. N. Vodyanitskii, A. A. Vasil’ev, A. V. Kozheva, E. F. Sataev, and M. N. Vlasov, “Influence of iron-containing pigments on the color of soils on alluvium of the Middle Kama plain,” Eurasian Soil Sci. 40, 289–301 (2007).CrossRefGoogle Scholar
  4. 4.
    N. P. Kirillova and Z. S. Artem’eva, RF Patent No. 2015618613, (August 12, 2015).Google Scholar
  5. 5.
    N. P. Kirillova, Yu. N. Vodyanitskii, and T. M. Sileva, “Conversion of soil color parameters from the Munsell system to the CIE-L*a*b* system,” Eurasian Soil Sci. 48, 468–475 (2015).CrossRefGoogle Scholar
  6. 6.
    N. P. Kirillova and T. M. Sileva, “Taxonomic soil diagnostics using automated guide,” Moscow Univ. Soil Sci. Bull. 70, 116–121 (2015).CrossRefGoogle Scholar
  7. 7.
    N. P. Kirillova, T. M. Sileva, T. Yu. Ul’yanova, and M. I. Makarov, RF Patent No. 2013621357, (October 18, 2013).Google Scholar
  8. 8.
    N. P. Kirillova, T. M. Sileva, T. Yu. Ul’yanova, S. Yu. Rozov, M. A. Il’yashenko, and M. I. Makarov, “Digital soil map of Chashnikovo Training and Experimental Soil Ecological Center, Moscow State University,” Moscow Univ. Soil Sci. Bull. 70, 58–65 (2015).CrossRefGoogle Scholar
  9. 9.
    N. P. Kirillova, T. M. Sileova, T. Yu. Ulyanova, S. Yu. Rozov, and I. E. Smirnova, “Digital large-scale soil parent material map of Chashnikovo Training and Experimental Soil Ecology Center, Moscow State University,” Moscow Univ. Soil Sci. Bull. 72, 93–99 (2017).CrossRefGoogle Scholar
  10. 10.
    Classification and Diagnostics of Soils of the Soviet Union (Kolos, Moscow, 1977) [in Russian].Google Scholar
  11. 11.
    L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  12. 12.
    I. V. Kostenko, “Scanning study of the optical parameters of sandy soddy-steppe soil samples from the southern Ukraine,” Eurasian Soil Sci. 42, 1012–1020 (2009).CrossRefGoogle Scholar
  13. 13.
    D. S. Orlov, N. I. Sukhanova, and M. S. Rozanova, Spectral Reflectance of Soils and Their Components (Moscow State Univ., Moscow, 2001) [in Russian].Google Scholar
  14. 14.
    Field Guide for Russian Soils (Dokuchaev Soil Science Inst., Moscow, 2008) [in Russian].Google Scholar
  15. 15.
    E. Yu. Prudnikova and I. Yu. Savin, “Study of the optical properties of an exposed soil surface,” J. Opt. Technol. 83, 642–647 (2016).CrossRefGoogle Scholar
  16. 16.
    M. Aitkenhead, M. Coull, R. Gwatkin, and D. Donnelly, “Automated soil physical parameter assessment using Smartphone and digital camera imagery,” J. Imaging 2, 35 (2016). doi 10.3390/jimaging2040035CrossRefGoogle Scholar
  17. 17.
    M. J. Aitkenhead, M. Coull, W. Towers, G. Hudson, and H. I. J. Black, “Prediction of soil characteristics and color using data from the National Soils Inventory of Scotland,” Geoderma 200–201, 99–107 (2013). http://dx.doi.org/10.1016/j.geoderma.2013.02.013CrossRefGoogle Scholar
  18. 18.
    L. R. Barrett, “Spectrophotometric color measurement in situ in well drained sandy soils,” Geoderma 108, 49–77 (2002).CrossRefGoogle Scholar
  19. 19.
    K. Baumann, I. Schöning, M. Schrumpf, R. H. Ellerbrock, and P. Leinweber, “Rapid assessment of soil organic matter: soil color analysis and Fourier transform infrared spectroscopy,” Geoderma 278, 49–57 (2016). http://dx.doi.org/10.1016/j.geoderma.2016.05.012CrossRefGoogle Scholar
  20. 20.
    A. Bedidi, B. Cervelle, J. Madeira, and M. Pouget, “Moisture effects on visible spectral characteristics of lateritic soils,” Soil Sci. 153, 129–141 (1992).CrossRefGoogle Scholar
  21. 21.
    CIE 15: Technical Report: Colorimetry (International Commission on Illumination, Vienna, 2004).Google Scholar
  22. 22.
    L. Gómez-Robledo, N. López-Ruiz, M. Melgosa, A. J. Palma, L. F. Capitán-Vallvey, and M. Sánchez-Marañón, “Using the mobile phone as Munsell soil-color sensor: an experiment under controlled illumination conditions,” Comput. Electron. Agric. 99, 200–208 (2013).CrossRefGoogle Scholar
  23. 23.
    J. Y. Hardeberg, Acquisition and reproduction of color images, 2001. http://www.dissertation.com/library/ 11213 50a.html. Accessed February 28, 2016.Google Scholar
  24. 24.
    S. Ibanez-Asensio, A. Marques-Mateu, H. Moreno-Ramon, and S. Balasch, “Statistical relationships between soil color and soil attributes in semiarid areas,” Biosyst. Eng. 116, 120–129 (2013). http://dx.doi.org/ 10.1016/j.biosystemseng.2013.07.013.CrossRefGoogle Scholar
  25. 25.
    IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2014).Google Scholar
  26. 26.
    D. B. Kemp, “Colorimetric characterization of flatbed scanners for rock/sediment imaging,” Comput. Geosci. 67, 69–74 (2014).CrossRefGoogle Scholar
  27. 27.
    N. P. Kirillova, D. B. Kemp, and Z. S. Artemyeva, “Colorimetric analysis of soil with flatbed scanners,” Eur. J. Soil Sci. 68 (4), 420–433 (2017).CrossRefGoogle Scholar
  28. 28.
    R. G. Kuehni, “Industrial color difference: progress and problems,” Color Res. Appl. 15, 261–265 (1990).CrossRefGoogle Scholar
  29. 29.
    N. Levin, E. Ben-Dor, and A. Singer, “A digital camera as a tool to measure color indices and related properties of sandy soils in semi-arid environments,” Int. J. Remote Sens. 26 (24), 5475–5492 (2005).CrossRefGoogle Scholar
  30. 30.
    M. D. Melville and G. Atkinson, “Soil color: its measurement and its designation in models of uniform color space,” J. Soil Sci. 36, 495–512 (1985).CrossRefGoogle Scholar
  31. 31.
    Munsell Soil Color Charts. 2009, Revised Edition (Munsell Color Company, Boston, 2009).Google Scholar
  32. 32.
    M. Sánchez-Marañón, R. Ortega, I. Miralles, and M. Soriano, “Estimating the mass wetness of Spanish arid soils from lightness measurements,” Geoderma 141, 397–406 (2007).CrossRefGoogle Scholar
  33. 33.
    Scanned_RGB_to_LAB.xls. doi 10.13140/RG.2.2.30479. 28328Google Scholar
  34. 34.
    V. M. Sellitto, V. Barrón, G. Palumbo, and C. Colombo, “Application of diffuse reflectance spectroscopy (DRS) to study European volcanic soils: a preliminary examination,” in Soils of Volcanic Regions in Europe, Ed. by O. Arnalds, F. Bartoli, P. Buurman, H. Oskarsson, G. Stoops, and P. Garcia-Rodeja (Springer-Verlag, New York, 2007), pp. 437–452. doi 10.1007/978-3-540-48711-1_32Google Scholar
  35. 35.
    R. A. Viscarra Rossel, B. Minasny, P. Roudier, and A. B. McBratney, “Color space models for soil science,” Geoderma 133, 320–337 (2006).CrossRefGoogle Scholar
  36. 36.
    R. A. Viscarra Rossel, et al., “A global spectral library to characterize the world’s soil,” Earth-Sci. Rev. 155, 198–230 (2016). doi 10.1016/j.earscirev.2016.01.012CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. P. Kirillova
    • 1
  • T. M. Sileva
    • 1
  • T. Yu. Ul’yanova
    • 1
  • I. E. Smirnova
    • 1
  • A. S. Ul’yanova
    • 1
  • E. K. Burova
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations