Advertisement

Eurasian Soil Science

, Volume 51, Issue 7, pp 744–757 | Cite as

The Mississippian Paleosols in the Brontsy Quarry, Kaluga region

  • T. V. Alekseeva
  • A. O. Alekseev
  • P. I. Kalinin
Genesis and Geography of Soils
  • 13 Downloads

Abstract

A chronosequence of five Visean (Aleksinian–Venevian interval, C1v, 326–336 Mya) paleosols on the territory of Moscow calcareous sedimentary basin (Brontsy quarry, Kaluga region) was studied in detail. Two lowermost paleosols are coastal peat-bearing paleosols developed under mangrove vegetation. Three upper paleosols develop pedocomplexes, in which the lower part is the marine limestone altered to different degrees by weathering/pedogenesis with the formation of eroded Rendzina-type soil. It is overlain by paleosols developed from terrigenous sediments of playa origin. They are characterized by elevated concentrations of Fe, Mg, Ti, Ga, and some other elements; the formation of secondary micritic carbonates, iron oxides, and smectites; and increased values of geochemical indexes (such as CIA-K). Smectite (low-charged beidellite) predominates in these paleosols. Iron oxides are represented by goethite and lepidocrocite attesting to the predominance of oxygenic environments. Pedocomplex at the Mikhaylovian/Venevian boundary is overlain by non-marine palustrine deposits known as “black rhizoidal limestone.” The paleoclimate reconstruction based on the chemical composition data attests to its polycyclic character. The Mikhaylovian time was most humid was (~1000 mm/yr). Later, starting from Venevian, gradual aridization of the climate began and annual precipitation decreased to 750 mm/yr and less.

Keywords

geochemistry mineralogy of soils isotopic composition of carbon in carbonates paleoclimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. V. Alekseeva and A. O. Alekseev, “On the lepidocrocite formation in soils,” Eurasian Soil Sci. 33, 1053–1060 (2000).Google Scholar
  2. 2.
    T. V. Alekseeva, A. O. Alekseev, and S. V. Gubin, “Paleosol complex in the uppermost Mikhailovian horizon (Viséan, Lower Carboniferous) in the southern flank of the Moscow syneclise,” Paleontol. J. 50, 319–335 (2016).CrossRefGoogle Scholar
  3. 3.
    T. V. Alekseeva and B. N. Zolotareva, “Fractionation of humic acids due to adsorption on montmorillonite and palygorskite,” Eurasian Soil Sci. 6, 658–671 (2013).Google Scholar
  4. 4.
    T. V. Alekseeva, B. N. Zolotareva, and Yu. G. Kolyagin, “Fractionation of humic acids by clay minerals assayed by 13C-NMR spectroscopy,” Dokl. Biol. Sci. 434, pp. 341–346 (2010).CrossRefGoogle Scholar
  5. 5.
    T. V. Alekseeva, P. B. Kabanov, B. N. Zolotareva, A. O. Alekseev, and V. A. Alekseeva, “Humic substances of the late Carboniferous palygorskitic paleosol from the southern Moscow region, Russia,” Dokl. Biol. Sci. 425, 128–132 (2009).CrossRefGoogle Scholar
  6. 6.
    T. N. Bel’skaya, E. A. Ivanova, R. A. Il’khovskii, et al., Guide on Excursion through the Carboniferous Sections in Moscow Region (Nauka, Moscow, 1975) [in Russian].Google Scholar
  7. 7.
    B. P. Gradusov, Minerals with Mixed-Layered Structure in Soils (Nauka, Moscow, 1976) [in Russian].Google Scholar
  8. 8.
    T. S. Demkina and V. A. Demkin, “Humic status of soils in dry and semidesert steppes during historical period,” Pochvovedenie, No. 9, 5–11 (1994).Google Scholar
  9. 9.
    M. I. Dergacheva, Archeological Soil Science (Siberian Branch, Russian Academy of Sciences, Novosibirsk, 1997) [in Russian].Google Scholar
  10. 10.
    P. I. Kalinin and A. O. Alekseev, “Geochemical characterization of loess-soil complexes on the Terek-Kuma Plain and the Azov-Kuban’ Lowland,” Eurasian Soil Sci. 44, 1315–1332 (2011).CrossRefGoogle Scholar
  11. 11.
    M. Kh. Makhlina, M. V. Vdovenko, A. S. Alekseev, et al., Lower Carbon of Moscow Syneclise and Voronezh Anteclise (Nauka, Moscow, 1993) [in Russian].Google Scholar
  12. 12.
    Yu. V. Moseichik, Early Carboniferous Flora in Moscow Basin, Vol. 1: Composition, Ecology, Phytogeographic Relationships, and Stratigraphic Role (GEOS, Moscow, 2009) [in Russian].Google Scholar
  13. 13.
    A. I. Osipova and T. N. Bel’skaya, “Venevskii horizon of the southern flank of Moscow Basin,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 11, 33–44 (1965).Google Scholar
  14. 14.
    T. V. Tatyanchenko, T. V. Alekseeva, and P. I. Kalinin, “Mineralogical and chemical compositions of the paleosols of different ages buried under kurgans in the southern Ergeni region and their paleoclimatic interpretation,” Eurasian Soil Sci. 46, 341–354 (2013).CrossRefGoogle Scholar
  15. 15.
    S. N. Chukov, Structural and Functional Parameters of Soil Organic Matter under Anthropogenic Impact (St. Petersburg State Univ., St. Petersburg, 2001) [in Russian].Google Scholar
  16. 16.
    M. S. Shvetsov, “History of the Moscow Carboniferous Basin in the Dinant Epoch,” Tr. Ross. Gos. Geologorazved. Univ. 12, 3–107 (1938).Google Scholar
  17. 17.
    M. S. Shvetsov, “Stratigraphy of Lower Carboniferous deposits of the southern flank of Moscow Basin,” Vestn. Mosk. Gorn. Akad. 1 (2), 223–242 (1922).Google Scholar
  18. 18.
    A. O. Alekseev, P. B. Kabanov, T. V. Alekseeva, and P. I. Kalinin, “Iron, magnetic susceptibility, and XRF characterization of an upper Mississippian cyclothemic section Polotnyanyi Zavod (Moscow Basin, Russia),” in Magnetic Susceptibility Application: A Window onto Ancient Environments and Climatic Variations (Geological Society, London, 2015), Vol. 414, pp. 181–198.Google Scholar
  19. 19.
    T. V. Alekseeva, A. O. Alekseev, S. V. Gubin, P. B. Kabanov, and V. A. Alekseeva, “Palaeoenvironments of the Middle–Late Mississippian Moscow Basin (Russia) from multiproxy study of palaeosols and palaeokarsts,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 450, 1–16 (2016). http://dx.doi.org/doi10.1016/j.palaeo.2016.02.030 CrossRefGoogle Scholar
  20. 20.
    Ch. W. Finkl, “Coastal soils,” in Encyclopedia of Coastal Sciences, Ed. by M. L. Schwartz (Springer-Verlag, New York, 2005), pp. 278–302.Google Scholar
  21. 21.
    T. M. Gallagher and N. D. Sheldon, “A new paleothermometer for forest paleosols and its implications for Cenozoic climate,” Geology 41, 647–650 (2013).CrossRefGoogle Scholar
  22. 22.
    A. U. Genring and A. M. Hofmeister, “The transformation of lepidocrocite during heating: a magnetic and spectroscopic study,” Clays Clay Miner. 42 (4), 409–415 (1994).CrossRefGoogle Scholar
  23. 23.
    P. G. Hatcher, I. A. Breger, L. W. Dennis, and G. E. Maciel, Chemical Structures in Coal: NMR Studies and a Geochemical Approach (US Geological Survey, Reston, VA, 1982), Vol. 27, pp. 172–183.Google Scholar
  24. 24.
    P. B. Kabanov, T. V. Alekseeva, V. A. Alekseeva, A. O. Alekseev, and S. V. Gubin, “Paleosols in Late Moscovian (Carboniferous) marine carbonates of the East European craton revealing “great calcimagnesian plain” paleolandscapes,” J. Sediment. Res. 80, 195–215 (2010).CrossRefGoogle Scholar
  25. 25.
    P. B. Kabanov, A. S. Alekseev, R. R. Gabdullin, et al., “Progress in sequence stratigraphy of upper Viséan and lower Serpukhovian of southern Moscow Basin, Russia,” Newsl. Carboniferous Stratigr. 30, 55–65 (2013).Google Scholar
  26. 26.
    P. B. Kabanov, A. O. Alekseev, and T. Zaitsev, “The upper Viséan–Serpukhovian in the type area for the Serpukhovian Stage (Moscow Basin, Russia), Part 2. Bulk geochemistry and magnetic susceptibility,” Geol. J. 51 (2), 195–211 (2016).CrossRefGoogle Scholar
  27. 27.
    H. W. Nesbitt and G. M. Young, “Early Proterozoic climates and plate motions inferred from major element chemistry of lutites,” Nature 299, 1523–1534 (1982).CrossRefGoogle Scholar
  28. 28.
    G. J. Retallack, Soils of the Past: An Introduction to Paleopedology (Blackwell, Oxford, 2001).CrossRefGoogle Scholar
  29. 29.
    U. Schwertmann, “Occurrence and formation of iron oxides in various pedoenvironments,” in Iron in Soils and Clay Minerals (Springer-Verlag, New York, 1985), Vol. 217, pp. 267–308.Google Scholar
  30. 30.
    N. D. Sheldon and N. J. Tabor, “Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols,” Earth-Sci. Rev. 95, 1–52 (2009).CrossRefGoogle Scholar
  31. 31.
    Procedures for Soil Analysis, Ed. by L. P. van Reeuwijk (Wageningen, 2002).Google Scholar
  32. 32.
    M. J. Wilson, “Soil smectites and related interstratifies minerals: recent developments,” Proceedings of the International Clay Conference, Ed. by L. G. Schultz, H. van Olphen, F. A. Mumpton (Denver, 1987), pp. 167–173.Google Scholar
  33. 33.
    K. Zamanian, K. Pustovoytov, and Y. Kuzyakov, “Pedogenic carbonates: forms and formation processes,” Earth-Sci. Rev. 157, 1–17 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. V. Alekseeva
    • 1
  • A. O. Alekseev
    • 1
  • P. I. Kalinin
    • 1
  1. 1.Institute of Physicochemical and Biological Problems of Soil ScienceRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations