Advertisement

Eurasian Soil Science

, Volume 51, Issue 7, pp 843–856 | Cite as

Transformation of Trioctahedral Mica in the Upper Mineral Horizon of Podzolic Soil during the Two-Year-Long Field Experiment

  • I. I. Tolpeshta
  • T. A. Sokolova
  • A. A. Vorob’eva
  • Yu. G. Izosimova
Mineralogy and Micromorphology of Soils
  • 14 Downloads

Abstract

An experiment on transformation of biotite (fraction <1 μm) particles placed into containers with different permeability in the AEL horizon of podzolic soil was performed in order to estimate the contribution of different factors to the transformation of biotite in the modern soil. After two-year-long incubation in the AEL horizon, biotite was transformed into vermiculite, mixed-layer biotite–vermiculite, and pedogenic chlorite. The most intense vermiculitization of the biotite took place under the impact of fungal hyphae and, to a lower degree, fine plant roots and components of the soil solution. The formation of labile structures from biotite was accompanied by thinning of the mica crystallites, the disturbance of the homogeneity of layers, the removal of interlayer K, the removal and oxidation of octahedral Fe, the increase in the sum of exchangeable cations, and the appearance of exchangeable Al. The process of chloritization was definitely diagnosed upon the action of plant roots and fungal hyphae on the biotite. Strong complexing anions released by fungal hyphae partly inhibited chloritization. Chloritization led to a decrease in the cation exchange capacity of vermiculitic structures.

Keywords

biotite vermiculite pedogenic chlorite mechanisms of mineral transformation podzolic soils (Retisols) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Alekseeva, T. Ya. Dronova, and T. A. Sokolova, “Chemical and mineralogical characteristics of podzolic and bog-podzolic soils developed from twolayered deposits in the Central Forest State Biospheric Reserve,” Moscow Univ. Soil Sci. Bull. 62, 140–148 (2007).CrossRefGoogle Scholar
  2. 2.
    A. G. Bulakh, Calculation of Mineral Formulae (Nedra, Moscow, 1964) [in Russian].Google Scholar
  3. 3.
    N. G. Vasil’ev and F. D. Ovcharenko, “The chemistry of the surfaces of the acid forms of natural layer silicates,” Russ. Chem. Rev. 46, 775–788 (1977).CrossRefGoogle Scholar
  4. 4.
    V. V. Egorov, V. M. Fridland, E. N. Evanova, N. N. Rozov, et al., Classification and Diagnostics of Soils of the Soviet Union (Kolos, Moscow, 1977) [in Russian].Google Scholar
  5. 5.
    A. I. Matvienko, M. I. Makarov, and O. V. Menyailo, “Biological sources of soil CO2 under Larix sibirica and Pinus sylvestris,” Russ. J. Ecol. 45, 174–180 (2014).CrossRefGoogle Scholar
  6. 6.
    The X-Ray Identification and Crystal Structures of Clay Minerals, Ed. by G. Brown (Mineralogical Society, London, 1961; Mir, Moscow, 1965).Google Scholar
  7. 7.
    T. A. Sokolova, I. I. Tolpeshta, and I. V. Topunova, “Biotite weathering in podzolic soil under conditions of a model field experiment,” Eurasian Soil Sci. 43, 1150–1158 (2010).CrossRefGoogle Scholar
  8. 8.
    I. I. Tolpeshta and M. Leman, “Spatial variation and evaluation of additivity of parameters of the acid-base state of pale-podzolic soils of the Central Forest Nature Reserve,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 3, 12–19 (2000).Google Scholar
  9. 9.
    I. I. Tolpeshta and T. A. Sokolova, “Extractable aluminum compounds in soils of the southern taiga (soils of the Central Forest Reserve as an example),” Eurasian Soil Sci. 43, 893–904 (2010).CrossRefGoogle Scholar
  10. 10.
    I. I. Tolpeshta and T. A. Sokolova, “Aluminum compounds in soil solutions and their migration in podzolic soils on two-layered deposits,” Eurasian Soil Sci. 42, 24–35 (2009).CrossRefGoogle Scholar
  11. 11.
    I. I. Tolpeshta, T. A. Sokolova, E. Bonifacio, and G. Falcone, “Pedogenic chlorites in podzolic soils with different intensities of hydromorphism: origin, properties, and conditions of their formation,” Eurasian Soil Sci. 43, 777–787 (2010).CrossRefGoogle Scholar
  12. 12.
    L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  13. 13.
    J. G. Acker and O. P. Bricker, “The influence of pH on biotite dissolution and alteration kinetics at low temperature,” Geochim. Cosmochim. Acta 56, 3073–3092 (1992).CrossRefGoogle Scholar
  14. 14.
    J. M. Arocena and K. R. Glowa, “Mineral weathering in ectomycorrhizosphere of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) as revealed by soil solution composition,” For. Ecol. Manage. 133, 61–70 (2000).CrossRefGoogle Scholar
  15. 15.
    J. M. Arocena, K. R. Glowa, H. B. Massicotte, and L. Lavkulich, “Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) in the Ae horizon on a luvisol,” Can. J. Soil. Sci. 79, 25–35 (1999).CrossRefGoogle Scholar
  16. 16.
    L. Augusto, J. Ranger, M.-P. Turpault, and P. Bonnaud, “Experimental in situ transformation of vermiculites to study the weathering impact of tree species on the soil,” Eur. J. Soil Sci. 52, 81–92 (2001).CrossRefGoogle Scholar
  17. 17.
    R. I. Barnhisel and P. M. Bertsch, “Chlorites and hydroxy-interlayered vermiculite and smectite,” in Weed. Minerals in Soil Environments, Ed. by J. B. Dixon (Soil Science Society of America, Madison, 1989), pp. 729–788.Google Scholar
  18. 18.
    E. B. A. Bisdom, G. Ctoops, J. Delvigne, P. Curmi, and H.-J. Altemuller, “Micromorphology of weathering biotite and its secondary products,” Pedologie 32 (2), 225–252 (1982).Google Scholar
  19. 19.
    S. Bonneville, D. J. Morgan, A. Schmalenberger, A. Bray, A. Brown, S. A. Banwart, and L. G. Benning, “Tree-mycorrhiza symbiosis accelerate mineral weathering: evidences from nanometer-scale elemental fluxes at the hypha–mineral interface,” Geochim. Cosmochim. Acta 75, 6988–7005 (2011).CrossRefGoogle Scholar
  20. 20.
    V. Brahy and B. Delvaux, “Cation exchange resin and test vermiculite to study soil processes in situ in a toposequence of Luvisol and Cambisol on loess,” Eur. J. Soil Sci. 52 (3), 397–408 (2001).CrossRefGoogle Scholar
  21. 21.
    A. W. Bray, L. G. Benning, S. Bonneville, and E. H. Oelkers, “Biotite surface chemistry as a function of aqueous fluid composition,” Geochim. Cosmochim. Acta 128, 58–70 (2014).CrossRefGoogle Scholar
  22. 22.
    A. W. Bray, E. H. Oelkers, S. Bonneville, D. Wolff-Boenisch, N. J. Potts, G. Fones, and L. G. Benning, “The effect of pH, grain size, and organic ligands on biotite weathering rates,” Geochim. Cosmochim. Acta 164, 127–145 (2015).CrossRefGoogle Scholar
  23. 23.
    C. Calvaruso, M.-P. Turpault, and P. Frey-Klett, “Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis,” Appl. Environ. Microbiol. 72 (2), 1258–1266 (2006).CrossRefGoogle Scholar
  24. 24.
    L. Dzene, E. Ferrage, J.-C. Viennet, E. Tertre, and F. Hubert, “Crystal structure control of aluminized clay minerals on the mobility of cesium in contaminated soil environments,” Sci. Rep. 7 (4318), 1–12 (2017).Google Scholar
  25. 25.
    H. L. Ehrlich, Geomicrobiology (Marcel Dekker, New York, 2002).Google Scholar
  26. 26.
    V. C. Farmer, J. D. Russel, W. J. McHardy, A. C. D. Newman, J. L. Ahlrichs, and J. Y. H. Rimsaite, “Evidence for loss of protons and octachedral iron from oxidized biotites and vermiculites,” Miner. Mag. 38 (294), 12–13 (1971).CrossRefGoogle Scholar
  27. 27.
    A. W. Fordham, “Weathering of biotite into dioctahedral clay minerals,” Clay Miner. 25, 51–63 (1990).CrossRefGoogle Scholar
  28. 28.
    R. J. Gilkes, R. C. Young, and J. P. Quirk, “The oxidation of octahedral iron in biotite,” Clays Clay Miner. 20, 303–315 (1972).CrossRefGoogle Scholar
  29. 29.
    G. R. Gobran, M.-P. Turpault, and F. Courchesne, “Contribution of rhizospheric processes to mineral weathering in forest soils,” in Biogeochemistry of Trace Elements in the Rhizosphere (Elsevier, Amsterdam, 2005), pp. 3–26.CrossRefGoogle Scholar
  30. 30.
    P. J. Gregory, “Roots, rhizosphere and soil: the route to a better understanding of soil science,” Eur. J. Soil Sci. 57, 2–12 (2006).CrossRefGoogle Scholar
  31. 31.
    S. J. Haward, M. M. Smits, K. V. Ragnarsdottir, J. R. L. Ragnarsdottir, S. A. Banwart, and T. J. McMaster, “In situ atomic force microscopy measurements of biotite basal plane reactivity in the presence of oxalic acid,” Geochim. Cosmochim. Acta 75, 6870–6881 (2011).CrossRefGoogle Scholar
  32. 32.
    A. Heinemeyer, M. Wilkinson, R. Vargas, J.-A. Subke, E. Casella, J. I. L. Morison, and P. Ineson, “Exploring the “overflow tap” theory: linking forest soil CO2 fluxes and individual mycorrhizosphere components to photosynthesis,” Biogeosciences 9, 79–95 (2012).CrossRefGoogle Scholar
  33. 33.
    A. G. Jongmans and N. van Breemen, “Rock-eating fungi,” Nature 389 (16), 682–683 (1997).CrossRefGoogle Scholar
  34. 34.
    B. E. Kalinowsky and P. Schweda, “Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1–4, room temperature,” Geochim. Cosmochim. Acta 60 (3), 367–385 (1996).CrossRefGoogle Scholar
  35. 35.
    B. S. Kapoor, “The formation of 2:1–2:2 intergrade clays in some Norwegian podzols,” Clay Miner. 10, 79–86 (1973).CrossRefGoogle Scholar
  36. 36.
    B. S. Kapoor, “Weathering of micaceous clays in some Norwegian podzols,” Clay Miner. 9, 383–394 (1972).CrossRefGoogle Scholar
  37. 37.
    B. Lanson, E. Ferrage, F. Hubert, D. Prêt, L. Marescha, M.-P. Turpault, and J. Ranger, “Experimental aluminization of vermiculite interlayers: an x-ray diffraction perspective on crystal chemistry and structural mechanisms,” Geoderma 249–250, 28–39 (2015).CrossRefGoogle Scholar
  38. 38.
    C. Leyval and J. Berthelin, “Weathering of a mica by roots and rhizospheric microorganisms of pine,” Soil Sci. Soc. Am. J. 55, 1009–1016 (1991).CrossRefGoogle Scholar
  39. 39.
    D. M. Moore and R. C. Reynolds, X-Ray Diffraction and the Identification and Analysis of Clay Minerals (Oxford University Press, Oxford, 1989).Google Scholar
  40. 40.
    T. Murakami, S. Utsunomiya, T. Yokoyama, and T. Kasama, “Biotite dissolution processes and mechanisms in the laboratory and in nature: Early stage weathering environment and vermiculitization,” Am. Miner. 88, 377–386 (2003).CrossRefGoogle Scholar
  41. 41.
    A. T. Nottingham, B. L. Turner, K. Winter, M.G. A. van der Heijden, and E. V. J. Tanner, “Arbuscular mycorrhizal mycelial respiration in a moist tropical forest,” New Phytol. 186, 957–967 (2010).CrossRefGoogle Scholar
  42. 42.
    M. Ochs, “Influence of humified and non-humified natural organic compounds on mineral dissolution,” Chem. Geol. 132, 119–124 (1996).CrossRefGoogle Scholar
  43. 43.
    F. Paris, P. Bonnaud, J. Ranger, and F. Lapeyrie, “In vitro weathering of phlogopite by ectomycorrhizal fungi I. Effect of K+ and Mg2+ deficiency on phyllosilicate evolution,” Plant Soil 177, 191–201 (1995).CrossRefGoogle Scholar
  44. 44.
    F. Paris, B. Botton, and F. Lapeyrie, “In vitro weathering of phlogopite by ectomycorrhizal fungi II. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+,” Plant Soil 179, 141–150 (1996).CrossRefGoogle Scholar
  45. 45.
    J. R. Price and M. A. Velbel, “Rates of biotite weathering, and clay mineral transformation and neoformation, determined from watershed geochemical massbalance methods for the Coweeta Hydrologic Laboratory, Southern Blue Ridge Mountains, North Carolina, USA,” Aquat. Geochem. 20, 203–224 (2014). https://doi.org/10.1007/s10498-013-9190-y.CrossRefGoogle Scholar
  46. 46.
    G. Ranger, E. Dambrine, M. Robert, D. Righi, and C. Felix, “Study of current soil-forming processes using bags of vermiculite and resins placed within soil horizons,” Geoderma 48, 335–350 (1991).CrossRefGoogle Scholar
  47. 47.
    J. Ranger and C. Nys, “The effect of spruce (Picea abies Karst.) on soil development: an analytical and experimental research,” Eur. J. Soil Sci. 45, 193–204 (1994).CrossRefGoogle Scholar
  48. 48.
    M. Robert and J. Berthelin, “Role of biological and biochemical factors in soil mineral weathering,” in Interaction of Minerals with Natural Organics and Microbes, Ed. by P. M. Huang and M. Schnitzer (Soil Science Society of America, Madison, 1986).Google Scholar
  49. 49.
    M.-P. Turpault, D. Righi, and C. Uterano, “Clay minerals: precise markers of the spatial and temporal variability of the biogeochemical soil environment,” Geoderma 147, 108–115 (2008).CrossRefGoogle Scholar
  50. 50.
    W. J. Ullman, D. L. Kirchman, S. A. Welch, and P. Vandevivere, “Laboratory evidence for microbially mediated silicate mineral dissolution in nature,” Chem. Geol. 132, 11–17 (1996).CrossRefGoogle Scholar
  51. 51.
    N. van Breemen, U. S. Lundstrom, and A. G. Jongmans, “Do plants drive podzolization via rock-eating mycorrhizal fungi?” Geoderma 94, 163–171 (2000).CrossRefGoogle Scholar
  52. 52.
    P. A. W. van Hees, D. L. Jones, G. Jentschke, and D. L. Godbold, “Mobilization of aluminium, iron and silicon by Picea abies and ectomycorrhizas in a forest soil,” Eur. J. Soil Sci. 55, 101–111 (2004).CrossRefGoogle Scholar
  53. 53.
    K. van Rompaey, E. van Ranst, A. Verdoodt, and F. de Coninck, “Use of the test-mineral technique to distinguish simple acidolysis from acido-complexolysis in a podzol profile,” Geoderma 137, 293–299 (2007).CrossRefGoogle Scholar
  54. 54.
    M. A. Vicente, M. Razzaghe, and M. Robert, “Formation of aluminium hydroxyl vermiculite (intergrade) and smectite from mica under acidic conditions,” Clay Miner. 12, 101–112 (1977).CrossRefGoogle Scholar
  55. 55.
    J.-C. Viennet, F. Hubert, E. Ferrage, E. Tertre, A. Legout, and M.-P. Turpault, “Investigation of clay mineralogy in temperate acidic soil of forest using x-ray diffraction profile modeling: beyond the HIS and HIV description,” Geoderma 241–242, 75–86 (2015).CrossRefGoogle Scholar
  56. 56.
    F. Vitali, F. J. Longstaffe, P. J. McCarthy, A. G. Plint, and W. G. E. Caldwell, “Stable isotopic investigation of clay minerals and pedogenesis in an interfluve paleosol from the Cenomanian Dunvegan Formation, N.E. British Columbia, Canada,” Chem. Geol. 192, 269–287 (2002).CrossRefGoogle Scholar
  57. 57.
    A. Voinot, D. Lemarchand, C. Collignon, M. Graneta, F. Chabaux, and M.-P. Turpault, “Experimental dissolution vs. transformation of micas under acidic soil conditions: clues from boron isotopes,” Geochim. Cosmochim. Acta 117, 144–160 (2013).CrossRefGoogle Scholar
  58. 58.
    H. Wallander and T. Wickman, “Biotite and microcline as potassium sources in ectomycorrhizal and nonmycorrhizal Pinus sylvestris seedlings,” Mycorrhiza 9, 25–32 (1999).CrossRefGoogle Scholar
  59. 59.
    W. Wang, J. Sun, C. Dong, and B. Lian, “Biotite weathering by Aspergillus niger and its potential utilization,” J. Soils Sediments 16, 1901–1910 (2016).CrossRefGoogle Scholar
  60. 60.
    M. Wojdyr, “Fityk: a general-purpose peak fitting program,” J. Appl. Cryst. 43, 1126–1128 (2010).CrossRefGoogle Scholar
  61. 61.
    IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015).Google Scholar
  62. 62.
    IUSS Working Group WRB, World Reference Base for Soil Resources 2006, World Soil Resources Reports No. 103 (Food and Agriculture Organization, Rome, 2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. I. Tolpeshta
    • 1
  • T. A. Sokolova
    • 1
  • A. A. Vorob’eva
    • 1
  • Yu. G. Izosimova
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations