Advertisement

Eurasian Soil Science

, Volume 50, Issue 12, pp 1515–1534 | Cite as

Dynamics of Soil Properties and Plant Composition during Postagrogenic Evolution in Different Bioclimatic Zones

  • V. M. TelesninaEmail author
  • I. N. Kurganova
  • V. O. Lopes de Gerenyu
  • L. A. Ovsepyan
  • V. I. Lichko
  • A. M. Ermolaev
  • D. M. Mirin
Degradation, Rehabilitation, and Conservation of Soils

Abstract

The postagrogenic dynamics of acidity and some parameters of humus status have been studied in relation to the restoration of zonal vegetation in southern taiga (podzolic and soddy-podzolic soils (Retisols)), coniferous-broadleaved (subtaiga) forest (gray forest soil (Luvic Phaeozem)), and forest-steppe (gray forest soil (Haplic Phaeozem)) subzones. The most significant transformation of the studied properties of soils under changing vegetation has been revealed for poor sandy soils of southern taiga. The degree of changes in the content and stocks of organic carbon, the enrichment of humus in nitrogen, and acidity in the 0- to 20-cm soil layer during the postagrogenic evolution decreases from north to south. The adequate reflection of soil physicochemical properties in changes of plant cover is determined by the climatic zone and the land use pattern. A correlation between the changes in the soil acidity and the portion of acidophilic species in the plant cover is revealed for the southern taiga subzone. A positive relationship is found between the content of organic carbon and the share of species preferring humus-rich soils in the forest-steppe zone.

Keywords

postagrogenic soils vegetation demutation carbon pool soil acidity biodiversity ecologicalcenotic scales southern-taiga coniferous-broadleaved and forest-steppe zones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Alifanov, Soil and Elementary Soil Cover Unit (Pushchino, 1974) [in Russian].Google Scholar
  2. 2.
    V. M. Alifanov, L. A. Gugalinskaya, and L. A. Ivannikova, “Assessment and forecast of hydrothermal conditions of pedogenesis of gray soils” in Soil Processes and Spatio-Temporal Organization of Soils (Nauka, Moscow, 2006), pp. 471–494.Google Scholar
  3. 3.
    N. D. Ananyeva, E. A. Susyan, E. V. Stolnikova, I. M. Ryzhova, and E. O. Bocharnikova, “Microbial biomass carbon and the microbial carbon dioxide production by soddy-podzolic soils in postagrogenic biogeocenosis and in native spruce forests of the southern taiga (Kostroma oblast)” Eurasian Soil Sci. 42 (9), 1029–1037 (2009).CrossRefGoogle Scholar
  4. 4.
    O. A. Antsiferova, “Dynamics of fertility indices on the fallow lands of Kaliningrad oblast” Agrokhim. Vestn. No. 2, 2–4 (2008).Google Scholar
  5. 5.
    S. I. Bolysov and Yu. N. Fuzeina, “Physical-geographic conditions of Kostroma Volga region: geological- geomorphological structure” in Kostroma Volga Region: Nature and a Man (Moscow, 2001), pp. 36–60.Google Scholar
  6. 6.
    O. Yu. Baranova, G. B. Nomerov, and M. N. Stroganova, “Changes in the properties of arable soddypodzolic soils after afforestation” in Soil-Formation in Forest Biogeocenoses (Nauka, Moscow, 1989), pp. 60–78.Google Scholar
  7. 7.
    A.S. Vladychenskii, V. M. Telesnina, and M. V. Ivanko, “Change of some properties of taiga soils after agricultural use in Kostroma oblast” Dokl. Ekol. Pochvoved. 3 (3), 130–150 (2006).Google Scholar
  8. 8.
    A. S. Vladychenskii and V. M. Telesnina, “A comparative characterization of postagrogenic soils under different lithological conditions in the Southern taiga” Moscow Univ. Soil Sci. Bull. 62, 167–174 (2007).CrossRefGoogle Scholar
  9. 9.
    A. S. Vladychenskii, V. M. Telesnina, K. A. Rumyantseva, and T. A. Chalaya, “Organic matter and biological activity of postagrogenic soils in the southern taiga using the example of Kostroma oblast” Eurasian Soil Sci. 46 (5), 518–529 (2013). doi 10.1134/S1064229313050141CrossRefGoogle Scholar
  10. 10.
    East European Forests: History in the Holocene and Present, Ed. by O. V. Smirnov (Nauka, Moscow, 2004) [in Russian].Google Scholar
  11. 11.
    N. I. Guzel’, “Transformation of the soil cover after overgrowing of post-agrogenic lands in the Karelian Isthmus” Mater. Izuch. Russ. Pochv, No. 1, 10–13 (1999).Google Scholar
  12. 12.
    A. Ya. Gul’be, Candidate’s Dissertation in Biology (Moscow, 2009).Google Scholar
  13. 13.
    T. I. Evdokimova, I. V. Yakushevskaya, and E. M. Samoilova, “Soil cover patterns on the right bank of the Oka River” in Productivity of Soils in the Forest-Steppe Zone (Pushchino, 1972) [in Russian].Google Scholar
  14. 14.
    A. M. Ermolaev and L. T. Shirshova, “Influence of weather conditions and management of a sown meadow on the herbage productivity and properties of gray forest soils” Eurasian Soil Sci. 33 (12), 1321–1328 (2000).Google Scholar
  15. 15.
    V. S. Ipatov and D. M. Mirin, Description of Phytocenoses: Methodological Recommendations (St. Petersburg State Univ., St. Petersburg, 2008) [in Russian].Google Scholar
  16. 16.
    D. V. Karelin, D. I. Lyuri, S. V. Goryachkin, V. N. Lunin, and A. V. Kudikov, “Changes in the carbon dioxide emission from soils in the course of postagrogenic succession in the chernozems forest-steppe” Eurasian Soil Sci. 48 (11) 1229–1241 (2015). doi 10.1134/S1064229315110095CrossRefGoogle Scholar
  17. 17.
    L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  18. 18.
    G. N. Koptsik, T. V. Bagdasarova, and O. V. Gorlenko, “Relationships of species diversity of the plants and properties of soils in ecosystems of southern taiga” Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol. 106 (2), 31–38 (2001).Google Scholar
  19. 19.
    I. N. Kurganova and V. O. Lopes De Gerenyu, “The stock of organic carbon in soils of the Russian federation: Updated estimation in connection with land use changes” Dokl. Biol. Sci. 426, 219–221 (2009).CrossRefGoogle Scholar
  20. 20.
    A. V. Kurmanskaya, “Transformation of the phytomass of plant communities under the impact of haymaking and grazing” in Problems of Agriculture (Kaliningrad State Technical Univ., Kaliningrad, 2004), pp. 271–275.Google Scholar
  21. 21.
    A. V. Litvinovich, O. Yu. Pavlova, and D. V. Chernov, “Transformation of the humus status of soddypodzolic soil upon anthropogenic impact” Dokl. Ross. Akad. S-kh. Nauk, No. 6, 205 (2002).Google Scholar
  22. 22.
    A. V. Litvinovich and I. A. Plylova, “The change in the acid-base properties of soddy-podzolic loamy soil during post-agrogenic evolution, Proceedings of International Scientific-Practical Conference “Scientific Support of Development of Agroindustrial Complex Under Reformation” (St. Petersburg State Agrarian Univ., St. Petersburg, 2009), pp. 160–164.Google Scholar
  23. 23.
    D. I. Lyuri, S. V. Goryachkin, N. A. Karavaeva, E. A. Denisenko, and T. G. Nefedova, Dynamics of Agricultural Lands of Russia in the 20th Century and Post-Agrogenic Recovery of Vegetation and Soils (GEOS, Moscow, 2010) [in Russian].Google Scholar
  24. 24.
    D. I. Lyuri, D. V. Karelin, A. V. Kudikov, and S. V. Goryachkin, “Changes in soil respiration in the course of the postagrogenic succession on sandy soils in the southern taiga zone” Eurasian Soil Sci. 46 (9), 935–947 (2013). doi 10.1134/S1064229313070041CrossRefGoogle Scholar
  25. 25.
    I. B. Makarov, Candidate’s Dissertation in Biology (Moscow, 1981).Google Scholar
  26. 26.
    Yu. L. Meshalkina and V. P. Samsonova, Practical Manual on Mathematical Statistics in Soil Science (MAKS-Press, Moscow, 2008) [in Russian].Google Scholar
  27. 27.
    A. M. Morozov and I. O. Nikolaeva, “Specific forestation on the arable land and haymaking field” Vestn. Alati. Gos. Agrar. Univ., No. 5 (103), 82–86 (2013).Google Scholar
  28. 28.
    S. V. Moskalenko and M. I. Bobrovskii, “Dissemination of forest plant species from old-grown oak forests onto abandoned arable lands in the Kaluzhskie Zaseki Nature Reserve” Izv. Samar. Nauch. Tsentra, Ross. Akad. Nauk 14 (1), 1332–1335 (2012).Google Scholar
  29. 29.
    A. B. Novakovskii, “The features and operating principles of the GRAPHS software module” in Automation of Scientific Studies (Syktyvkar State Univ., Syktyvkar, 2004), No. 27, pp. 2–29.Google Scholar
  30. 30.
    G. N. Ogureeva, Botanica-Geographical Zonation of the Soviet Union (Moscow State Univ., Moscow, 1991) [in Russian].Google Scholar
  31. 31.
    T. M. Parakhnevich and A. I. Kirik, “Change in the structure of plant communities in the course of succession on the fallow land” Vestn. Voronezh. Gos. Agrar. Univ., No. 4 (35), (2012).Google Scholar
  32. 32.
    Soils of Natural Zones of the Russian Plain, Ed. by B. F. Aparin (St. Petersburg State Univ., St. Petersburg, 2007) [in Russian].Google Scholar
  33. 33.
    L. G. Ramenskii, I. A. Tsatsenkin, O. N. Chizhikov, and N. A. Antipin, Ecological Assessment of Fodder Resources by Vegetation Cover (Sel’khozgiz, Moscow, 1956) [in Russian].Google Scholar
  34. 34.
    I. M. Ryzhova, A. A. Erokhova, and M. A. Podvezennaya, “Dynamics and structure of carbon storage in the postagrogenic ecosystems of the southern taiga” Eurasian Soil Sci. 47 (12), 1207–1215 (2014). doi 10.1134/S1064229314090117CrossRefGoogle Scholar
  35. 35.
    E. B. Skvortsova, O. Yu. Baranova, and G. B. Numerov, “The change of soil microstructure upon afforestation of arable land” Pochvovedenie, No. 9, 101–109 (1987).Google Scholar
  36. 36.
    O. A. Sorokina, “Diagnostic parameters of soil formation in gray forest soils of abandoned fields overgrowing with pine forests in the middle reaches of the Angara River” Eurasian Soil Sci. 43 (8), 867–875 (2010).CrossRefGoogle Scholar
  37. 37.
    S. F. Sushkov, Candidate’s Dissertation in Biology (Leningrad, 1974).Google Scholar
  38. 38.
    V. M. Telesnina, I. E. Vaganov, A. A. Karlsen, A. E. Ivanova, M. A. Zhukov, and S. M. Lebedev, “Specific features of the morphology and chemical properties of coarse-textured postagrogenic soils of the southern taiga, Kostroma oblast” Eurasian Soil Sci. 49 (1), 102–115 (2016). doi 10.1134/S1064229316010117CrossRefGoogle Scholar
  39. 39.
    A. A. Tishkov, Doctoral Dissertation in Geography (Moscow, 1994).Google Scholar
  40. 40.
    A. D. Fokin, I. L. Chernikova, L. Sh. Ibragimov, and Kh. Kh. Syunyaev, “Role of plant remains in the supply of plants with ash elements on podzolic soils” Pochvovedenie, No. 6, (1979).Google Scholar
  41. 41.
    A. S. Fomina, “The intensity of the elementary pedogenic processes in soddy-podzolic sandy soils and further use of fallow lands” Izv. S.-Peterb. Gos. Agrar. Univ., No. 13, 11–15 (2009).Google Scholar
  42. 42.
    H. P. Collins, E. T. Elliot, K. Paustian, L. G. Bundy, W. A. Dick, D. R. Huggins, A. J. M. Smucker, and E. A. Paul, “Soil carbon pools and fluxes in long-term corn belt agroecosystems” Soil Biol. Biochem. 32, 157–168 (2000).CrossRefGoogle Scholar
  43. 43.
    U. Falkengren-Grerup, D.-J. ten Brink, and J. Brunet, “Land use effects on soil N, P, C, and pH persist over 40–80 years of forest growth on agricultural soils” For. Ecol. Manage. 225, 74–81 (2005).CrossRefGoogle Scholar
  44. 44.
    L. B. Guo and R. M. Gifford, “Soil carbon stocks and land use change: a meta analysis” Global Change Biol. 8, 345–360 (2000).CrossRefGoogle Scholar
  45. 45.
    O. Kalinina, S. V. Goryachkin, N. A. Karavaeva, D. I. Lyuri, L. Najdenko, and L. Giani, “Self-restoration of post-agrogenic sandy soils in the southern Taiga of Russia: soil development, nutrient status, and carbon dynamics” Geoderma 152, 35–42 (2009).CrossRefGoogle Scholar
  46. 46.
    O. Kalinina, S. E. Krause, S. V. Goryachkin, N. A. Karavaeva, D. I. Lyuri, and L. Giani, “Self-restoration of post-agrogenic chernozems of Russia: soil development, carbon stocks, and dynamics of carbon pools” Geoderma 162, 196–206 (2011).CrossRefGoogle Scholar
  47. 47.
    O. Kalinina, O. Chertov, A. V. Dolgikh, S. V. Goryachkin, D. I. Lyuri, S. Vormstein, and L. Giani, “Self-restoration of post-agrogenic Albeluvisols: soil development, carbon stocks and dynamics of carbon pools” Geoderma 207–208, 221–233 (2013).CrossRefGoogle Scholar
  48. 48.
    O. Kalinina, A. N. Barmin, O. Chertov, A. V. Dolgikh, S. V. Goryachkin, D. I. Lyuri, and L. Giani, “Self-restoration of post-agrogenic soils of Calcisol-Solonetz complex: soil development, carbon stock dynamics of carbon pools” Geoderma 237–238, 117–128 (2015).CrossRefGoogle Scholar
  49. 49.
    O. Kalinina, S. V. Goryachkin, D. I. Lyuri, and L. Giani, “Post-agrogenic development of vegetation, soils, and carbon stocks under self-restoration in different climatic zones of European Russia” Catena 129, 18–29 (2015).CrossRefGoogle Scholar
  50. 50.
    I. N. Kurganova and V. O. Lopes de Gerenyu, “Assessment of changes in soil organic carbon storage in soils of Russia, 1990-2020” Eurasian Soil Sci. 41 (13), 1371–1377 (2008).CrossRefGoogle Scholar
  51. 51.
    I. Kurganova, A. Yermolaev, V. Lopes de Gerenyu, A. Larionova, Y. Kuzyakov, T. Keller, and S. Lange, “Carbon balance in soils of abandoned lands in Moscow region” Eurasian Soil Sci. 40 (1), 50–58 (2007).CrossRefGoogle Scholar
  52. 52.
    E. Landolt, Okologische Zeigerwerts zur Sweizer Flora (Geobotanischen Inst., Zurich, 1977), Vol. 64, pp. 1-208.Google Scholar
  53. 53.
    V. Lopes de Gerenyu, I. Kurganova, and Ya. Kuzyakov, “Soil organic carbon pools in former arable chernozems” Ecolojia, No. 4, 38–44 (2008).Google Scholar
  54. 54.
    A. A. Titlyanova and A. D. Sambuu, “Determinacy and synchronicity of fallow succession in the Tuva steppes” Biol. Bull. 41, 545–553 (2014).CrossRefGoogle Scholar
  55. 55.
    L. Vesterdal, E. Ritter, and P. Gundersen, “Change in soil organic carbon following afforestation of former arable land” For. Ecol. Manage. 169, 137–147 (2002).CrossRefGoogle Scholar
  56. 56.
    N. Vuichard, P. Ciais, L. Belelli, P. Smith, and R. Valentini, “Carbon sequestration due to the abandonment of agriculture in the former USSR since 1990” Global Biogeochem. Cycles 22, GB4018 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. M. Telesnina
    • 1
    Email author
  • I. N. Kurganova
    • 2
  • V. O. Lopes de Gerenyu
    • 2
  • L. A. Ovsepyan
    • 2
  • V. I. Lichko
    • 2
  • A. M. Ermolaev
    • 2
  • D. M. Mirin
    • 3
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Institute of Physicochemical and Biological Problems of Soil ScienceRussian Academy of SciencesPushchino, Moscow oblastRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations