Advertisement

Eurasian Soil Science

, Volume 50, Issue 12, pp 1535–1544 | Cite as

Radioactive Contamination of Alluvial Soils in the Taiga Landscapes of Yakutia with 137Cs, 226Ra, and 238U

  • A. P. Chevychelov
  • P. I. Sobakin
Degradation, Rehabilitation, and Conservation of Soils
  • 24 Downloads

Abstract

The concentrations and distribution of 137Cs in alluvial soils (Fluvisols) of the upper and middle reaches of the Markha River in the northwest of Yakutia and 226Ra and 238U in alluvial soils within the El’kon uranium ore deposit in the south of Yakutia have been studied. It is shown that the migration of radiocesium in the permafrost-affected soils of Yakutia owing to alluviation processes extends to more than 600 km from the source of the radioactive contamination. The migration of 137Cs with water flows is accompanied by its deposition in the buried horizons of alluvial soils during extremely high floods caused by ice jams. In the technogenic landscapes of southern Yakutia, active water migration of 238U and 226Ra from radioactive dump rocks. The leaching of 238U with surface waters from the rocks is more intense than the leaching of 226Ra. The vertical distribution patterns of 238U and 226Ra in the profiles of alluvial soils are complex. Uranium tends to accumulate in the surface humus horizon and in the buried soil horizons, whereas radium does not display any definite regularities of its distribution in the soil profiles. At present, the migration of 238U and 226Ra with river water and their accumulation in the alluvial soils extend to about 30 km from the source.

Keywords

radioactive elements contaminations concentration distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Aleksakhin, “Radioactive contamination as a type of soil degradation” Eurasian Soil Sci. 42, 1386–1396 (2009).CrossRefGoogle Scholar
  2. 2.
    E. V. Arinushkina, Manual on the Chemical Analysis of Soils (Moscow State Univ., Moscow, 1970) [in Russian].Google Scholar
  3. 3.
    I. S. Burtsev, S. K. Stepanova, E. N. Kolodeznikova, and N. D. Arkhipov, “Examination of underground nuclear explosions and damps of uranium-containing ores in Yakutia” in Radiation Safety of Sakha Republic (Yakutia) (Yakut Branch, Russian Academy of Sciences, Yakutsk, 2004), pp. 56–67.Google Scholar
  4. 4.
    G. V. Dobrovol’skii, Soils of River Floodplains in the Center of the Russian Plain (Moscow State Univ., Moscow, 1968) [in Russian].Google Scholar
  5. 5.
    V. V. Kil’myaninov, V. M. Tazaninov, and V. V. Shepelev, “Ice jams: ice monsters on the rivers of Yakutia” Nauka Tekhn. Yakut., No. 1, 36–40 (2001).Google Scholar
  6. 6.
    Measurement Protocol of Activity of Radionuclides Using Scintillation Gamma Spectrometer with Progress Software (Center of Metrology, Moscow, 2003) [in Russian].Google Scholar
  7. 7.
    The Peaceful Nuclear Explosions: Ensuring the Total and Radiation Safety during Explosions (Moscow, 2001) [in Russian].Google Scholar
  8. 8.
    L. N. Mikhailovskaya, I. V. Molchanova, E. N. Karavaeva, and V. N. Pozolotina, “Behavior of heavy natural radionuclides in technogenic landscapes of Southern Yakutia” Ekologiya, No. 3, 203–205 (1996).Google Scholar
  9. 9.
    I. V. Molchanova and E. N. Karavaeva, Ecological and Geochemical Aspects of Migration of Radionuclides in Soil-Vegetation Cover (Ural Branch, Russian Academy of Sciences, Yekaterinburg, 2001) [in Russian].Google Scholar
  10. 10.
    A. I. Perel’man, Geochemistry (Vysshaya Shkola, Moscow, 1989) [in Russian].Google Scholar
  11. 11.
    Resources of Surface Waters of Soviet Union. General Hydrological Characteristics, Vol. 17: Lena-Indigirka Region (Gidrometeoizdat, Leningrad, 1975) [in Russian].Google Scholar
  12. 12.
    A. A. Rode, Methodological System of Studies in Soil Science (Nauka, Novosibirsk, 1971) [in Russian].Google Scholar
  13. 13.
    B. G. Rozanov, Soil Morphology (Moscow State Univ., Moscow, 1983) [in Russian].Google Scholar
  14. 14.
    P. I. Sobakin, A. P. Chevychelov, and V. E. Ushnitskii, “Radioecological conditions in Yakutia” Radiats. Biol., Radioekol. 44 (3), 283–288 (2004).Google Scholar
  15. 15.
    P. I. Sobakin, “Migration of 137Cs in permafrost soils of Yakutia” Radiats. Biol., Radioekol. 50 (5), 590–598 (2010).Google Scholar
  16. 16.
    P. I. Sobakin and A. A. Perk, “Radioactive elements in soils of Yakutia” Vestn. Dal’nevost. Otd., Ross. Akad. Nauk, No. 5, 77–86 (2013).Google Scholar
  17. 17.
    F. V. Sukhorukhov, B. L. Shcherbov, B. S. Strakhovenko, B. S. Smolyakov, V. I. Kirillina, and Yu. N. Prokop’eva, Ecological Conditions (Radionuclides, Heavy Metals) of Nyurba and Ust-Aldan Uluses of the Republic of Sakha (Yakutia) (Yakutsk, 2001) [in Russian].Google Scholar
  18. 18.
    N. A. Titaeva and T. I. Veksler, “Role of uranium and thorium in mineral weathering in Yakutia” Geokhimiya, No. 6, 740–744 (1969).Google Scholar
  19. 19.
    V. E. Ushnitskii, D. D. Nogovitsin, P. I. Sobakin, and T. V. Argunova, “The levels of radioactive pollution of the Markha River floodplain (Vilyui River basin)” Vestn. Sev.-Vost. Nauch. Tsentra, Ross. akad. Nauk, No. 4, 28–34 (2008).Google Scholar
  20. 20.
    A. P. Chevychelov, P. I. Sobakin, and I. V. Molchanova, “Radioactive contamination of permafrost affected soils with 137Cs and 90Sr, the products of an accidental underground nuclear explosion” Eurasian Soil Sci. 39, 1362–1369 (2006).CrossRefGoogle Scholar
  21. 21.
    L. W. Cooper, I. L. Larsen, T. M. Beasley, S. S. Dolvin, J. M. Grebmeier, J. M. Kelley, M. Scott, and A. Johnson-Pyrtle, “The distribution of radiocesium and plutonium in sea ice-entrained Arctic sediments in relation to potential sources and sinks” J. Environ. Radioact. 39 (3), 279–303 (1998).CrossRefGoogle Scholar
  22. 22.
    S. Bister, J. Birkhan, T. Lullau, M. Bunka, A. Solle, C. Stieghorst, B. Riebe, R. Michel, and C. Waltrer, “Impact of former uranium mining activities on the floodplains of the Mulde River, Saxony, Germany” J. Environ. Radioact. 144, 21–31 (2015).CrossRefGoogle Scholar
  23. 23.
    Yu. V. Dubasov, V. A. Trifonov, S. M. Arshanskii, N. V. Skovorodkin, and E. A. Smirnova, “Current radiation situation in near area of air nuclear explosion conducted at Totskoe testing ground (Orenburg oblast) on September 14, 1954” Radiochemistry 46 (6), 612–617 (2004).CrossRefGoogle Scholar
  24. 24.
    A. D. Gedeonov, E. R. Petrov, and V. G. Alexeev, “Residual radioactive contamination of the peaceful underground nuclear explosion sites “Craton-3” and “Crystal” in the Republic of Sakha (Yakutia)” J. Environ. Radioact. 60, 221–234 (2002).CrossRefGoogle Scholar
  25. 25.
    H. Kato, Y. Onda, and M. Teramage, “Depth distribution of 137Cs, 134Cs and 131I in soil profile after Fukushima Dai-ichi nuclear power plant accident” J. Environ. Radioact. 111, 59–64 (2012).CrossRefGoogle Scholar
  26. 26.
    E. Lokas, J. W. Mietelski, K. Kleszcz, M. Miecznik, M. E. Ketterer, P. Wachniew, and S. Michalska, “Sources and vertical distribution of 137Cs, 238Pu, 239+240Pu and 241Am in peat profiles from southwest Spitsbergen” Appl. Geochem. 28, 100–108 (2013).CrossRefGoogle Scholar
  27. 27.
    E. Lokas, J. W. Mietelski, P. Bartminski, P. Wachniew, T. Kawiak, and J. Srodon, “Sources and pathways of artificial radionuclides to soils at a high Arctic site” Environ. Sci. Pollut. Res. 21 (12), 12479–12493 (2014).CrossRefGoogle Scholar
  28. 28.
    M. Puhakainen, T. Heikkinen, E. Steinnes, H. Thorring, and I. Outola, “Distribution of 90Sr and 137Cs in arctic soil profiles polluted by heavy metals” J. Environ. Radioact. 81 (2–3), 295–306 (2005).CrossRefGoogle Scholar
  29. 29.
    V. Ramzaev, V. Repin, A. Medvedev, E. Khramtsov, M. Timofeeva, and V. Yakovlev, “Radiological investigations at the “Taiga” nuclear explosion site: site description and situ measurements” J. Environ. Radioact. 102 (7), 672–680 (2011).CrossRefGoogle Scholar
  30. 30.
    V. Ramzaev, A. Mishine, L. Basalaeva, and J. Brown, “Radiostrontium hot spot in the Russian Arctic: ground surface contamination by 90Sr at the “Kraton-3” underground nuclear explosion site” J. Environ. Radioact. 95 (2–3), 107–125 (2007).CrossRefGoogle Scholar
  31. 31.
    V. Ramzaev, A. Mishin, V. Golikov, et al., “Radioecological studies at the Kraton-3 underground nuclear explosion site in 1978-2007: a review” J. Environ. Radioact. 60, 1092–1099 (2009).CrossRefGoogle Scholar
  32. 32.
    E. A. Rudak and O. L. Yachnik, “On the activity ratio 90Sr/137Cs in soil of the Chernobyl nuclear power plant 30-km zone in Ukraine” Lith. J. Phys. 49 (1), 117–122 (2009).CrossRefGoogle Scholar
  33. 33.
    A. Sakaguchi, M. Yamamoto, M. Hoshi, K. N. Apsalikov, and B. I. Gusev, “Plutonium isotopes and 137Cs in Dolon settlement near the Semipalatinsk nuclear test site: about 50 years after the first nuclear weapon testing” J. Radioanal. Nucl. Chem. 260 (3), 543–555 (2004).CrossRefGoogle Scholar
  34. 34.
    A. I. Shcheglov, O. B. Tsvetnova, and A. Klyashtorin, “The fate of Cs-137 in forest soils of Russian Federation and Ukraine contaminated due to the Chernobyl accident” J. Geochem. Explor. 142, 75–81 (2014).CrossRefGoogle Scholar
  35. 35.
    L. Skipperud, B. Salbu, D. H. Oughton, E. Drozcho, Y. Mokrov, and P. Strand, “Plutonium contamination in soils and sediments at Mayak PA, Russia” Health Phys. 89 (3), 255–266 (2005).CrossRefGoogle Scholar
  36. 36.
    J. Takada, T. Shintani, M. Hoshi, V. E. Stepanov, D. P. Yefremov, A. Akiyama, and M. Fukuda, “Radiological states around the Kraton-4 underground nuclear explosion site in Sakha” J. Radiat. Res. 40 (3), 223–228 (1999).CrossRefGoogle Scholar
  37. 37.
    M. T. Teramage, Y. Onda, J. Patin, H. Kato, T. Gomi, and S. Nam, “Vertical distribution of radiocesium in coniferous forest soil after the Fukushima nuclear power plant accident” J. Environ. Radioact. 137, 37–45 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Biological Problems of the CryolithozoneSiberian Branch of the Russian Academy of SciencesYakutskRussia

Personalised recommendations