Eurasian Soil Science

, Volume 50, Issue 11, pp 1301–1310 | Cite as

Temperature regime of solonetzic meadow-chernozemic permafrost-affected soil in a long-term cycle

Soil Physics

Abstract

The characteristics of temperature dynamics in a solonetzic meadow-chernozemic soil of alas depression in Central Yakutia are described on the basis of long-term (2005–2014) stationary studies. Quick changes in weather conditions accompanied by changes in the soil temperature regime were observed during that period. Thus, the beginning of soil thawing in the spring shifted to earlier dates, and the beginning of soil freezing in the fall shifted to later dates. Temperature trends demonstrate an increase in the mean annual soil temperatures at all the depths. In total, the period of the frozen state of the soil became considerably shorter: in the middle-profile horizons, by 30–39 days. The obtained results attest to the high dynamism in temperature parameters of meadow soils in alas depressions of Central Yakutia under conditions of global climate changes.

Keywords

permafrost zone soils of alas depressions climate changes weather conditions temperature regime of soil depth of active layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Alifanov, L. A. Gugalinskaya, and L.A. Ivannikova, “Hydrothermic conditions of functioning of gray soils: assessment and prognosis,” Eurasian Soil Sci. 41, 77–86 (2008).CrossRefGoogle Scholar
  2. 2.
    I. B. Archegova, “Thermal regime of tundra soils under reclamation and restoration of natural vegetation,” Eurasian Soil Sci. 40, 854–859 (2007).CrossRefGoogle Scholar
  3. 3.
    O. Y. Goncharova, G. V. Matyshak, A. A. Bobrik, N. G. Moskalenko, and O. E. Ponomareva, “Temperature regimes of northern taiga soils in the isolated permafrost zone of Western Siberia,” Eurasian Soil Sci. 48, 1329–1340 (2015).CrossRefGoogle Scholar
  4. 4.
    S. P. Gorshkov, “The CO2 problem: revision of concepts,” Izv. Vses. Geogr. O-va 118 (4), 297–305 (1990).Google Scholar
  5. 5.
    R. V. Desyatkin, Soil Formation in Thermokarst Depressions (Alases) of the Permafrost Zone (Nauka, Novosibirsk, 2008) [in Russian].Google Scholar
  6. 6.
    R. V. Desyatkin, A. R. Desyatkin, and P. P. Fedorov, “Temperature regime of permafrost taiga soils of Central Yakutia,” Kriosfera Zemli 16 (2), 70–78 (2012).Google Scholar
  7. 7.
    V. N. Dimo, Thermal Regime of Soils in the Soviet Union (Kolos, Moscow, 1972) [in Russian].Google Scholar
  8. 8.
    V. N. Dimo and N. N. Rozov, “Thermal criteria as the basis of the facial-provincial division of soils,” Pochvovedenie, No. 5, 12–22 (1974).Google Scholar
  9. 9.
    V. I. Dugarov, Candidate’s Dissertation in Agriculture (Ulan-Ude, 1967) [in Russian].Google Scholar
  10. 10.
    E. A. Dyukarev, “Influence of air temperature and snow cover on characteristics of the seasonally frozen soil layer s,” Kriosfera Zemli 19 (3), 45–51 (2015).Google Scholar
  11. 11.
    L. G. Elovskaya, A. K. Konorovskii, and D. D. Savvinov, Saline Permafrost-Affected Soils of Central Yakutia (Nauka, Moscow, 1966) [in Russian].Google Scholar
  12. 12.
    V. G. Zol’nikov, “Soils of the eastern half of Central Yakutia and their uses,” in Materials on the Environmental Conditions and Agriculture of Central Yakutia (Academy of Sciences of the Soviet Union, Moscow, 1954), No. 4, pp. 55–222.Google Scholar
  13. 13.
    D. A. Kaverin, A. V. Pastukhov, and G. G. Mazhitova, “Temperature regime of tundra soils and underlying permafrost in the European northeast of Russia,” Kriosfera Zemli 18 (3), 23–32 (2014).Google Scholar
  14. 14.
    N. B. Kakunov and E. I. Sulimova, “Changes in climatic parameters and development of permafrost,” Inzh. Izyskaniya, No. 6, 56–59 (2008).Google Scholar
  15. 15.
    L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  16. 16.
    Climate of Yakutsk, Ed. by Ts. A. Shver (Gidrometeoizdat, Leningrad, 1982) [in Russian].Google Scholar
  17. 17.
    A. G. Kryuchkov, “Temperature regime of southern chernozem under hard wheat in the dry stepp zone,” Byull. Orenb. Nauch. Tsentra, Ural. Otd., Ross. Akad. Nauk, No. 3, 1–11 (2015).Google Scholar
  18. 18.
    V. N. Kudeyarov, G. A. Zavarzin, S. A. Blagodatskii, A. V. Borisov, P. Yu. Voronin, V. A. Demkin, T. S. Demkina, I. V. Evdokimov, D. G. Zamolodchikov, D. V. Karelin, A. S. Komarov, I. N. Kurganova, A. A. Larionova, V. O. Lopes de Gerenyu, A. I. Utkin, and O. G. Chertov, Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia, Ed. by G. A. Zavarzin (Nauka, Moscow, 2007) [in Russian].Google Scholar
  19. 19.
    G. G. Mazhitova, “Soil temperature regimes in the discontinuous permafrost zone in the east European Russian arctic,” Eurasian Soil Sci. 41, 48–62 (2008).CrossRefGoogle Scholar
  20. 20.
    G. G. Mazhitova and D. A. Kaverin, “The dynamics of the depth of seasonal thawing and surface soil subsidence at the CALM site in European Russia,” Kriosfera Zemli 11 (4), 20–30 (2007).Google Scholar
  21. 21.
    G. V. Malkova, “Monitoring of mean annual permafrost temperature at the Bolvanskii station,” Kriosfera Zemli 14 (3), 3–14 (2010).Google Scholar
  22. 22.
    A. S. Motorin, “Temperature regime of seasonally frozen soils in the northern Transural region,” Vestn. Gos. Agrar. Univ. Sev. Zaural’ya, No. 2 (25), 63–66 (2014).Google Scholar
  23. 23.
    Scientific-Practical Handbook on Climate of the Soviet Union, No. 24, Book 1: Yakutian ASSR (Gidrometeoizdat, Leningrad, 1989) [in Russian].Google Scholar
  24. 24.
    A. V. Pavlov, “Permafrost and climate changes in the Russian north: observations and forecast,” Izv. Ross. Akad. Nauk, Ser. Geogr., No. 6, 6, 39–50 (2003).Google Scholar
  25. 25.
    A. V. Pavlov and N. G. Moskalenko, “Thermal regime of soils in the north of Western Siberia,” Kriosfera Zemli 5 (2), 11–19 (2001).Google Scholar
  26. 26.
    A. V. Pavlov, G. V. Anan’eva, D. S. Drozdov, N. G. Moskalenko, V. A. Dubrovin, N. B. Kakunov, G. P. Minailov, Yu. B. Skachkov, and P. N. Skryabin, “Monitoring of seasonally thawing layer and permafrost temperature in the north of Russia,” Kriosfera Zemli 6 (4), 30–39 (2002).Google Scholar
  27. 27.
    O. V. Reshotkin, O. I. Khudyakov, and T. N. Bedrina, “Temperature regime of podzolic soils in the Cis-Ural region related to climate warming,” Izv. Samar. Nauch. Tsentra, Ross. Akad. Nauk 12 (1), 1059–1063 (2010).Google Scholar
  28. 28.
    D. D. Savvinov, Hydrothermic Regime of Soils in the Permafrost Region (Nauka, Novosibirsk, 1976) [in Russian].Google Scholar
  29. 29.
    D. D. Savvinov and V. I. Sleptsov, Properties and Regimes of Permafrost-Affected Pale (Palevye) Soils (Yakutian Branch of the Academy of Sciences of the Soviet Union, Yakutsk, 1987) [in Russian].Google Scholar
  30. 30.
    D. O. Sergeev, Yu. A. Ukhova, Yu. V. Stanilovskaya, and V. E. Romanovskii, “Temperature regime of permafrost massifs and seasonally thawing layer in the mountains of northern Transbaikal region: restoration of stationary observations,” Kriosfera Zemli 11 (2), 19–26 (2007).Google Scholar
  31. 31.
    Yu. B. Skachkov, Candidate’s Dissertation in Geology (Yakutsk, 2001).Google Scholar
  32. 32.
    Yu. B. Skachkov, “Modern air temperature dynamics in the Sakha (Yakutia) Republic” in Geography of Yakutia, No. 9: Landscapes of Cryogenic Regions (Melnikov Permafrost Institute, Siberian Branch, Russian Academy of Sciences, Yakutsk, 2005), pp. 27–31.Google Scholar
  33. 33.
    A. A. Tanasienko and A. S. Chumbaev, “Conditions of the formation of ice barriers in eroded chernozems of Western Siberia,” Eurasian Soil Sci. 43, 417–426 (2010).CrossRefGoogle Scholar
  34. 34.
    A. N. Fedorov and P. Ya. Konstantinov, “Response of permafrost landscapes of Central Yakutia to current changes of climate and anthropogenic impacts,” Geogr. Nat. Res. 30, 146–150 (2009).CrossRefGoogle Scholar
  35. 35.
    O. I. Khudyakov and O. V. Reshotkin, “Temperature dynamics in sandy and loamy forest-tundra soils of the Polar Urals in relation to climate change,” Eurasian Soil Sci. 47, 1245–1258 (2014).CrossRefGoogle Scholar
  36. 36.
    S. M. Chudinova, S. S. Bykhovets, M. R. Sorokovikov, R. Barri, E. Zhang, and D. A. Gilichinskii, “Specific temperature dynamics of Russian soils during the latest climate warming,” Kriosfera Zemli 7 (3), 23–30 (2003).Google Scholar
  37. 37.
    E. V. Shein, M. V. Bannikov, O. A. Savoskina, and M. A. Mazirov, “Temperature regime of agrosoddypodzolic soils on slopes of different steepness,” Eurasian Soil Sci. 44, 157–162 (2011).CrossRefGoogle Scholar
  38. 38.
    E. A. Davidson and I. A. Janssens, “Temperature sensitivity of soil carbon decomposition and feedbacks to climate change,” Nature 440, 165–173 (2006).CrossRefGoogle Scholar
  39. 39.
    R. Desyatkin, A. Fedorov, A. Desyatkin, and P. Konstantinov, “Air temperature changes and their impact on permafrost ecosystems in eastern Siberia,” Therm. Sci. 19 (2), S351–S360 (2015). doi 10.2298/TSCI150320102DCrossRefGoogle Scholar
  40. 40.
    IPCC, “Summary for policymakers,” in Climate Change 2014: Mitigation of Climate Change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by O. Edenhofer and R. Pichs-Madruga (Cambridge University Press, Cambridge, 2014).Google Scholar
  41. 41.
    A. N. Fedorov, R. N. Ivanova, H. Park, T. Hiyama, and Y. Iijima, “Recent air temperature changes in the permafrost landscapes of northeastern Eurasia,” Polar Sci. 8 (2), 114–128 (2014).CrossRefGoogle Scholar
  42. 42.
    Y. Ishii, H. Yabuki, N. Kobayashi, and Y. Tanaka, “Thermal and Moisture Regimes in the Active Layer around an Alas,” in Activity Report of GAME-Siberia-2000 (Japan National Committee for GAME/GAMESiberia Subcommittee, Sapporo, 2001), pp. 107–110.Google Scholar
  43. 43.
    Y. Iijima, H. Park, K. Suzuki, H. Yabuki, T. Ohata, A. Fedorov, and R. Desyatkin, “Recent abrupt increase in active layer temperature and moisture in central Lena River basin,” 2nd Asia CliC Symposium “The State and Fate of Asian Cryosphere,” October 22–26, 2007 (Lanzhou, 2007), p.16.Google Scholar
  44. 44.
    H. Park, A. Fedorov, M. Zheleznyak, P. Konstantinov, and J. E. Walsh, “Effect of snow cover on pan-Arctic permafrost thermal regimes,” Clim. Dyn., (2014). doi 10.1007/s00382-014-2356-5Google Scholar
  45. 45.
    H. Park, A. Sherstiukov, A. Fedorov, I. Polyakov, and J. E. Walsh, “An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia,” Environ. Res. Lett. 9 (6), (2014). doi 10.1088/17489326/9/6/064026Google Scholar
  46. 46.
    M. W. Smith, “Microclimate influences on ground temperatures and permafrost distribution, Mackenzie Delta, Northwest territories,” Can. J. Earth Sci. 12, 1421–1438 (1975).CrossRefGoogle Scholar
  47. 47.
    B. L. Tong, S. Li, T. Zhang, and Y. He, “Frozen ground in the Altai Mountains of China, in Permafrost,” Proceedings of the Fourth International Conference, July 17–22, 1983 (National Academic Press, Washington, DC, 1983), pp. 1267–1272.Google Scholar
  48. 48.
    T. Zhang, “Influence of the seasonal snow cover on the ground thermal regime: an overview,” Rev. Geophys. 43, (2005). doi 10.1029/2004RG000157Google Scholar
  49. 49.
    T. Zhang, B. Tong, and S. Li, “Influence of snow cover on the lower limit of permafrost in Altai Mountains,” J. Glaciol. Geocryol. 7, 57–63 (1985).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Biological Problems of the Cryolithozone, Siberian DivisionRussian Academy of SciencesYakutskRussia
  2. 2.Melnikov Permafrost InstituteSiberian Branch of the Russian Academy of SciencesYakutskRussia

Personalised recommendations