Eurasian Soil Science

, Volume 50, Issue 1, pp 95–105 | Cite as

Dynamics of benzo[α]pyrene accumulation in soils under the influence of aerotechnogenic emissions

  • S. N. SushkovaEmail author
  • T. M. Minkina
  • S. S. Mandzhieva
  • I. G. Deryabkina
  • G. K. Vasil’eva
  • R. Kızılkaya
Degradation, Rehabilitation, and Conservation of Soils


The regularities of benzo[α]pyrene (BaP) accumulation and distribution in chernozems (Haplic Chernozems), meadow-chernozemic soils (Haplic Chernozems (Stagnic)), and alluvial soils (Fluvisols) affected by the aerotechnogenic emissions from the Novocherkasskaya Electric Power Station (NEPS) were studied on the basis of long-term (2002–2011) monitoring data. A 5-km-wide zone stretching to the northwest from the electric power station and coinciding with the predominant wind direction was found to be most contaminated, with the maximum accumulation of BaP at about 1.6 km from the source. The coefficients of vertical BaP distribution between the layers of 0–5 and 5–20 cm closely correlated with the contents of physical clay, clay, and humus, and with the cation exchange capacity. The content of BaP in soils was shown to be indicative of the level of technogenic loads related to the combustion products of hydrocarbon fuels.


monitoring benzo[α]pyrene extraction chernozems (Haplic Chernozem) meadow-chernozemic soils (Haplic Chernozems (Stagnic)) alluvial soils (Fluvisols) migration particle-size distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrophysical Methods of Soil Studies, Ed. by S. I. Dolgov (Nauka, Moscow, 1966) [in Russian].Google Scholar
  2. 2.
    E. V. Arinushkina, Manual on the Chemical Analysis of Soils (Moscow State Univ., Moscow, 1970) [in Russian].Google Scholar
  3. 3.
    N. V. Belousova, Ecology of Novocherkassk: Problems and Solutions (North Caucasus Scientific Center, Rostov-on-Don, 2001), pp. 387–395.Google Scholar
  4. 4.
    E. A. Belinskaya, G. V. Zykova, S. Y. Semenov, and G. G. Finakov, “Polycyclic aromatic hydrocarbons in the soils of Moscow,” Eurasian Soil Sci. 48 (6), 578–583 (2015). doi 10.7868/S0032180X15060039CrossRefGoogle Scholar
  5. 5.
    D. N. Gabov and V. A. Beznosikov, “Polycyclic aromatic hydrocarbons in tundra soils of the Komi Republic,” Eurasian Soil Sci. 47 (1), 18–25 (2014). doi 10.7868/S0032180X13110051CrossRefGoogle Scholar
  6. 6.
    D. N. Gabov, V. A. Beznosikov, and B. M. Kondratenok, “Polycyclic aromatic hydrocarbons in background podzolic and gleyic peat-podzolic soils,” Eurasian Soil Sci. 40 (3), 256–264 (2007).CrossRefGoogle Scholar
  7. 7.
    R. V. Galiulin and V. N. Bashkin, “Specific behavior of persistent organic pollutants in the atmospheric precipitation–plant system,” Agrokhimiya, No. 12, 69–77 (1999).Google Scholar
  8. 8.
    A. N. Gennadiev, I. S. Del’vig, N. S. Kasimov, and T. A. Teplitskaya, “Polycyclic aromatic hydrocarbons in soils of background territories and natural pedogenesis,” in Monitoring of Background Environmental Pollution (Gidrometeoizdat, Leningrad, 1989), No. 5, pp. 149–161.Google Scholar
  9. 9.
    A. N. Gennadiev, I. S. Kozin, E. I. Shrubor, and T. A. Teplitskaya, “Dynamics of soil pollution by polycyclic aromatic hydrocarbons and indication of the state of soil ecosystems,” Pochvovedenie, No. 10, 75–85 (1990).Google Scholar
  10. 10.
    A. N. Gennadiev, Yu. I. Pikovskii, S. S. Chernyanskii, T. A. Alekseeva, and R. G. Kovach, “Forms of polycyclic aromatic hydrocarbons and factors of their accumulations in soils affected by technogenic pollution (Moscow oblast),” Eurasian Soil Sci. 37 (7), 697–709 (2004).Google Scholar
  11. 11.
    O. N. Gorobtsova, O. G. Nazarenko, T. M. Minkina, N. I. Borisenko, and A. V. Yaroshchuk, “Role of the soil cover in accumulation and migration of polycyclic aromatic hydrocarbons under technogenic pollution,” Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, No. 1, pp. 73–79 (2005).Google Scholar
  12. 12.
    GOST (State Standard) Nature Protection. Soils. Classification of Chemicals for Pollution Control (Izd. Standartov, Moscow, 2004) [in Russian].Google Scholar
  13. 13.
    GOST (State Standard) Nature Protection. Soils. General Requirements for the Classification of Soils according to Their Response to Chemical Pollutants on Them (Izd. Standartov, Moscow, 1986) [in Russian].Google Scholar
  14. 14.
    GOST (State Standard) Nature Protection. Soils. Methods for Sampling and Preparation of Soil for Chemical, Bacteriological, and Helminthological Analysis (Izd. Standartov, Moscow, 1984) [in Russian].Google Scholar
  15. 15.
    GOST (State Standard) 26205-84: Soils. Determination of Mobile Forms of Phosphorus and Potassium by Machigin in Method Modified by CINAO (Izd. Standartov, Moscow, 1996) [in Russian].Google Scholar
  16. 16.
    GOST (State Standard) 26423-85: Soils. Methods for Determination of Specific Electric Conductivity, pH, and Solid Residue of Water Extract (Izd. Standartov, Moscow, 2011) [in Russian].Google Scholar
  17. 17.
    Yu. A. Izrael’, Ecology and Environmental Monitoring (Gidrometeoizdat, Moscow, 1984), pp. 355–356.Google Scholar
  18. 18.
    N. E. Kosheleva and E. M. Nikiforova, “Multiyear dynamics and factors of accumulation of benzo(a)pyrene in urban soils (on the example of the Eastern Administrative Okrug, Moscow),” Moscow Univ. Soil Sci. Bull. 66 (2), 65–74 (2011).CrossRefGoogle Scholar
  19. 19.
    D. N. Lipatov, A. I. Shcheglov, D. V. Manakhov, Y. A. Zavgorodnyaya, and P. T. Brekhov, “Spatial variation of benzo[a]pyrene and agrozem properties in the vicinity of the Yuzhno-Sakhalinsk thermal power plant,” Eurasian Soil Sci. 48 (5), 547–554 (2015). doi 10.7868/S0032180X15030089CrossRefGoogle Scholar
  20. 20.
    The Method of Measurement of the Mass Fraction of Benzo[a]pyrene in Soils, Grounds, and Sediments of Waste Waters by High Performance Liquid Chromatography (Moscow, 2008) [in Russian].Google Scholar
  21. 21.
    T. M. Minkina, D. L. Pinskii, S. S. Mandzhieva, E. M. Antonenko, and S. N. Sushkova, “Effect of the particle-size distribution on the adsorption of copper, lead, and zinc by chernozemic soils of Rostov oblast,” Eurasian Soil Sci. 44 (11), 1193–1200 (2011).CrossRefGoogle Scholar
  22. 22.
    O. G. Nazarenko, O. N. Gorobtsova, T. M. Minkina, M. Yu. Gusakova, and A. A. Botvin’eva, “The monitoring results of the content of 3,4-benzo[a]pyrene in soils affected by emissions of the Novocherkassk HPP,” Proceedings of III International Scientific Conf. “Modern Problems in Soil Pollution” (Moscow State Univ., Moscow, 2010), pp. 391–394.Google Scholar
  23. 23.
    O. G. Nazarenko, O. N. Gorobtsova, T. M. Minkina, and S. S. Mandzhieva, “Use of integral parameter of pollution in environmental assessment of technogenic territories,” Proceedings of II International Scientific Conf. “Modern Problems in Soil Pollution” (Moscow State Univ., Moscow, 2007), Vol. 2, pp. 130–133.Google Scholar
  24. 24.
    Yu. I. Pikovskii, Natural and Technogenic Fluxes of Hydrocarbons in the Environment (Moscow State Univ., Moscow, 1993) [in Russian].Google Scholar
  25. 25.
    Field and Laboratory Analysis of Physical Properties and Regimes of Soils: Methodological Guide, Ed. by E. V. Shein (Moscow State Univ., Moscow, 2001) [in Russian].Google Scholar
  26. 26.
    RD (Regulatory Document) 52.10. 556-95: Methodological Guide. Determination of Pollutants in Marine Bottom Sediments and Suspended Matter (Rosgidromet, Moscow, 2002) [in Russian].Google Scholar
  27. 27.
    S. N. Sushkova, T. M. Minkina, S. S. Mandzhieva, N. I. Borisenko, and T. M. Fedchenko, “Evaluation of 3,4-benzo[a]pyrene content in soils near Novocherkassk HPP by extraction of subcritical water,” Plodorodie, No. 4, 55–56 (2012).Google Scholar
  28. 28.
    T. A. Teplitskaya, T. A. Alekseeva, A. I. Ogloblina, and M. I. Afanas’ev, “Background pollution by 3,4-benzo[a]pyrene and some polycyclic aromatic hydrocarbons of environment of Eurasian continent,” in Monitoring of Background Environmental Pollution (Gidrometeoizdat, Leningrad, 1982), No. 1, pp. 120–126.Google Scholar
  29. 29.
    L. M. Shabad, “Chemical carcinogens in human environment,” in Complex Global Monitoring of Environmental Pollution (Gidrometeoizdat, Leningrad, 1982), pp. 69–77.Google Scholar
  30. 30.
    M. Sh. Shaimukhametov, “Determination of consumed Ca and Mg in chernozems,” Pochvovedenie, No. 12, 105–111 (1993).Google Scholar
  31. 31.
    The Status of Environment and Natural Resources of Rostov Oblast in 2011 (Government of Rostov Oblast, Rostov-on-Don, 2012) [in Russian].Google Scholar
  32. 32.
    A. V. Yaroshchuk, E. V. Maksimenko, and N. I. Borisenko, “Development of a method for benzo[a]pyrene extraction from soils,” Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, No. 9, Suppl., 44–46 (2003).Google Scholar
  33. 33.
    B. Antizar-Ladislao, J. Lopez-Real, and A. J. Beck, “Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal tar contaminated soil under invessel composting conditions,” Environ. Pollut. 141 (3), 459–468 (2006).CrossRefGoogle Scholar
  34. 34.
    S. Augusto, M. J. Pereira, C. Máguas, and C. Branquinho, “PAHs for regulatory purposes. A step towards the use of biomonitors as estimators of atmospheric,” Chemosphere 92, 626–632 (2013).CrossRefGoogle Scholar
  35. 35.
    M. S. Callén, J. M. López, A. Iturmendi, and A. M. Mastral, “Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area,” Environ. Pollut. 183, 166–174 (2013).CrossRefGoogle Scholar
  36. 36.
    Contaminants in Soil: Collation of Toxicological Data and Intake Values for Humans. Benzo[a]pyrene, Technical Report (Environment Agency, Bristol, 2002). ISBN: 1-857-05741-4.Google Scholar
  37. 37.
    J. Cristale, F. S. Silva, J. Z. Guilherme, and M. R. Rodrigues Marchi, “Influence of sugarcane burning on indoor/outdoor PAH air pollution in Brazil,” Environ. Pollut. 169, 210–216 (2012).CrossRefGoogle Scholar
  38. 38.
    T. K. Hybholt, J. Aamand, and A. R. Johnsen, “Quantification of centimeter-scale spatial variation in PAH, glucose and benzoic acid mineralization and soil organic matter in road-side soil,” Environ. Pollut. 159, 1085–1091 (2011).CrossRefGoogle Scholar
  39. 39.
    ISO 13877-2005: Soil Quality—Determination of Polynuclear Aromatic Hydrocarbons—Method Using Highperformance Liquid Chromatography, 2005.Google Scholar
  40. 40.
    Y. Jian, “Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list,” Mutat. Res. 557, 99–108 (2004).CrossRefGoogle Scholar
  41. 41.
    H. Liu, C. Y. Yang, Y. Tian, G. H. Lin, and T. L. Zheng, “Screening of PAH-degrading bacteria in a mangrove swamp using PCR–RFLP,” Marine Pollut. Bull. 60, 2056–2061 (2010).CrossRefGoogle Scholar
  42. 42.
    S. S. Mandzhieva, T. M. Minkina, S. N. Sushkova, G. V. Motuzova, T. V. Bauer, and V. A. Chapligin, “The group composition of metal compounds in soil as an index of soil ecological state,” Am. J. Agric. Biol. Sci. 9 (1), 19–24 (2014).CrossRefGoogle Scholar
  43. 43.
    T. M. Minkina, G. V. Motusova, S. S. Mandzhieva, and O. G. Nazarenko, “Ecological resistance of the soilplant system to contamination by heavy metals,” J. Geochem. Explor. 123, 33–40 (2012).CrossRefGoogle Scholar
  44. 44.
    D. R. Oros, J. R. M. Ross, R. B. Spies, and T. Mumley, “Polycyclic aromatic hydrocarbon (PAH) contamination in San Francisco Bay: a 10-year retrospective of monitoring in an urbanized estuary,” Environ. Res. 105, 101–118 (2007).CrossRefGoogle Scholar
  45. 45.
    D. S. Page, J. S. Brown, P. D. Boehm, A. E. Bence, and J. M. Neff, “A hierarchical approach measures the aerial extent and concentration levels of PAH-contaminated shoreline sediments at historic industrial sites in Prince William Sound, Alaska,” Mar. Pollut. Bull. 52, 367–379 (2006.CrossRefGoogle Scholar
  46. 46.
    T. S. Pereira, S. B. Laiana, J. A. V. Rocha, F. P. Broto, L. R. Comellas, D. M. F. Salvadori, and V. M. F. Vargas, “Toxicogenetic monitoring in urban cities exposed to different airborne contaminants,” Ecotoxicol. Environ. Safety 90, 174–182 (2013.CrossRefGoogle Scholar
  47. 47.
    D. P. Singh, R. Gadi, T. K. Mandal, T. Saud, M. Saxena, and S. K. Sharma, “Emissions estimates of PAH from biomass fuels used in rural sector of Indo-Gangetic Plains of India,” Atmos. Environ. 68, 120–126 (2013).CrossRefGoogle Scholar
  48. 48.
    S. N. Sushkova, T. M. Minkina O. V., Bolotova, G. K. Vasilyeva, N. I. Borisenko, S. S. Mandzhieva, I. G. Turina, T. V. Varduni, and R. Kizilkaya, “Optimization of conditions for benzo[a]pyrene extraction from soils,” J. Soil Sediments, (2015). doi 10.1007/s11368-015-1104-8Google Scholar
  49. 49.
    S. N. Sushkova, T. M. Minkina, S. S. Mandzhieva, N. I. Borisenko, G. K. Vasilyeva, R. Kızılkaya, and T. Aşkın, “Approbation of express-method for benzo[a]pyrene extraction from soils in the technogenic emission zone territories,” Eurasian J. Soil Sci., No. 4, 15–21 (2015).Google Scholar
  50. 50.
    M. Tobiszewski and J. Namiesnik, “PAH diagnostic ratios for the identification of pollution emission sources,” Environ. Pollut. 162, 110–119 (2012).CrossRefGoogle Scholar
  51. 51.
    T. Wenzl, R. Simon, J. Kleiner, and E. Anklam, “Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union,” Trends Anal. Chem. 25 (7), 716–725 (2006).CrossRefGoogle Scholar
  52. 52.
    A. E. Witter, M. H. Nguyen, S. Baidar, and P. B. Sak, “Coal-tar-based seal-coated pavement: a major PAH source to urban stream sediments,” Environ. Pollut. 185, 59–68 (2014).CrossRefGoogle Scholar
  53. 53.
    X.-H. Li, L.-L. Ma, X.-F. Liu, S. Fu, H.-X. Cheng, and X.-B. Xu, “Polycyclic aromatic hydrocarbon in urban soil from Beijing, China,” J. Environ. Sci. 18 (5), 944–950 (2006).CrossRefGoogle Scholar
  54. 54.
    R. C. M. Yam and W. H. Leung, “Emissions trading in Hong Kong and the Pearl River delta region—a modeling approach to trade decisions in Hong Kong’s electricity industry,” Environ. Sci. Policy 31, 1–12 (2013).CrossRefGoogle Scholar
  55. 55.
    Y. Zhu, L. Yang, Q. Yuan, C. Yan, C. Dong, C. Meng, X. Sui, L. Yao, F. Yang, Y. Lu, and W. Wang, “Airborne particulate polycyclic aromatic hydrocarbon (PAH) pollution in a background site in the North China Plain: concentration, size distribution, toxicity and sources,” Sci. Total Environ. 466–467, 357–368 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. N. Sushkova
    • 1
    Email author
  • T. M. Minkina
    • 1
  • S. S. Mandzhieva
    • 1
  • I. G. Deryabkina
    • 1
  • G. K. Vasil’eva
    • 2
  • R. Kızılkaya
    • 3
    • 4
  1. 1.Ivanovskii Academy of Biology and BiotechnologySouthern Federal UniversityRostov-on-DonRussia
  2. 2.Institute for Physicochemical and Biological Problems in Soil ScienceRussian Academy of SciencesPushchino, Moscow oblastRussia
  3. 3.Faculty of Agriculture, Department of Soil Science & Plant NutritionOndokuz Mayıs UniversityAtakum/SamsunTurkey
  4. 4.Agrobigen R&D Ltd.Co. Samsun TechnoparkOndokuz Mayıs UniversityAtakum/SamsunTurkey

Personalised recommendations