Eurasian Soil Science

, Volume 50, Issue 1, pp 20–29 | Cite as

The methods of geomorphometry and digital soil mapping for assessing spatial variability in the properties of agrogray soils on a slope

  • N. V. GoppEmail author
  • T. V. Nechaeva
  • O. A. Savenkov
  • N. V. Smirnova
  • V. V. Smirnov
Genesis and Geography of Soils


The relationships between the morphometric parameters (MPs) of topography calculated on the basis of digital elevation model (АSTER GDEM, 30 m) and the properties of the plow layer of agrogray soils on a slope were analyzed. The contribution of MPs to the spatial variability of the soil moisture reached 42%; to the content of physical clay (<0.01 mm particles), 59%; to the humus content, 46%; to the total nitrogen content, 31%; to the content of nitrate nitrogen, 28%; to the content of mobile phosphorus, 40%; to the content of exchangeable potassium, 45%; to the content of exchangeable calcium, 67%; to the content of exchangeable magnesium, 40%; and to the soil pH, 42%. A comparative analysis of the plow layer within the eluvial and transitional parts of the slope was performed with the use of geomorphometric methods and digital soil mapping. The regression analysis showed statistically significant correlations between the properties of the plow layer and the MPs describing surface runoff, geometric forms of surface, and the soil temperature regime.


geomorphometry spatial variability of the soil properties agrogray soil of slope Luvic Greyzemic Phaeozems ASTER GDEM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrochemical Methods of Soil Studies (Nauka, Moscow, 1975) [in Russian].Google Scholar
  2. 2.
    V. N. Afanas’ev and A. P. Tsypin, Econometrics in STATISTICA Software: Manual for Laboratory Practicum (Orenburg State Univ., Orenburg, 2008) [in Russian].Google Scholar
  3. 3.
    Yu. N. Blagoveshchenskii, The Secrets of Correlation Relationships in Statistics (Nauchnaya Kniga, Moscow, 2009) [in Russian].Google Scholar
  4. 4.
    G. P. Gamzikov, Nitrogen in Agriculture of Western Siberia (Nauka, Moscow, 1981) [in Russian].Google Scholar
  5. 5.
    A. N. Gennadiev, K. R. Olson, S. S. Chernyanskii, and R. L. Jones, “Quantitative assessment of soil erosion and accumulation processes with the help of a technogenic magnetic tracer,” Eurasian Soil Sci. 35 (1), 17–29 (2002).Google Scholar
  6. 6.
    N. V. Gopp, “Algorithm for compilation of digital soil maps based on field, laboratory, and satellite data,” Issled. Zemli Kosmosa, No. 3, 58–72 (2013).Google Scholar
  7. 7.
    N. V. Gopp, O. A. Savenkov, T. V. Nechaeva, and V. V. Smirnov, “Influence of morphometric parameters of the relief on spatial variability of the content of exchangeable potassium in a typical agrogray soil,” Agrokhimiya, No. 5, 54–63 (2014).Google Scholar
  8. 8.
    A. J. Gerrard, Soils and Landforms: An Integration of Geomorphology and Pedology (Unwin Hyman, London, 1982; Nedra, Leningrad, 1984).Google Scholar
  9. 9.
    I. S. Kaurichev, N. P. Panov, N. N. Rozov, M. V. Stratonovich, and A. D. Fokin, Soil Science (Agropromizdat, Moscow, 1989) [in Russian].Google Scholar
  10. 10.
    Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  11. 11.
    V. N. Kudeyarov, Nitrogen Cycle in Soil and Efficiency of Fertilizers (Nauka, Moscow, 1989) [in Russian].Google Scholar
  12. 12.
    V. M. Nazaryuk, O. A. Savenkov, and N. V. Smirnova, “Substantiation and analysis of the fertility parameters of soils and plant productivity for the modeling of nitrogen cycle in agricultural ecosystems,” Sib. Ekol. Zh. 11 (3), 391–401 (2004).Google Scholar
  13. 13.
    Field Guide for Correlation of Russian Soils (Dokuchaev Soil Science Institute, Moscow, 2008) [in Russian].Google Scholar
  14. 14.
    Practical Manual on Agrochemistry, Ed. by V. G. Mineev (Moscow State Univ., Moscow, 2001) [in Russian].Google Scholar
  15. 15.
    G. P. Gamzikov, A. E. Kochergin, P. I. Krupkin, and V. I. Chukanov, Diagnostics of Nitrogen Nutrition of the Field Cultures and Implementation of Nitrogen Fertilizers (Novosibirsk, 1983) [in Russian].Google Scholar
  16. 16.
    M. S. Simakova, “On computerized soil mapping,” Eurasian Soil Sci. 35 (2), 117–122 (2002).Google Scholar
  17. 17.
    I. V. Florinsky, R.G. Eilers, D. L. Burton, S. K. McMahon, C. M. Monreal, and A. Farenhorst, “Forecasting soil cartography based on digital relief modeling,” Geoinformatika, No. 1, 22–32 (2009).Google Scholar
  18. 18.
    Digital Soil Cartography: Theoretical and Experimental Studies, Ed. by A. L. Ivanov (Dokuchaev Soil Science Institute, Moscow, 2012) [in Russian].Google Scholar
  19. 19.
    P. A. Shary and D. L. Pinskii, “Statistical evaluation of the relationships between spatial variability in the organic carbon content in gray forest soils, soil density, concentrations of heavy metals, and topography,” Eurasian Soil Sci. 46 (11), 1076–1087 (2013).CrossRefGoogle Scholar
  20. 20.
    L. S. Sharaya and P. A. Shary, “Relationship of abiotic and biotic characteristics of the Zhiguli forest system,” Izv. Samar. Nauch. Tsentra, Ross. Akad. Nauk 11 (1), 22–30 (2009).Google Scholar
  21. 21.
    V. N. Yakimenko, Potassium in Agrocenoses of Western Siberia (Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2003) [in Russian].Google Scholar
  22. 22.
    IUSS Working Group WRB, World Reference Base for Soil Resources, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2014).Google Scholar
  23. 23.
    LP DAAC (Land Processes Distributed Active Archive Center). Scholar
  24. 24.
    A. B. McBratney, I. O. A. Odeh, T. F. A. Bishop, M. S. Dunbar, and T. M. Shatar, “An overview of pedometric techniques for use in soil survey,” Geoderma 97 (3), 293–327 (2000).CrossRefGoogle Scholar
  25. 25.
    I. D. Moore, P. E. Gessler, G. A. Nielsen, and G. A. Peterson, “Soil attribute prediction using terrain analysis,” J. Soil Sci. Soc. Am. 57 (2), 443–452 (1993).CrossRefGoogle Scholar
  26. 26.
    I. O. A. Odeh, A. B. McBratney, and D. J. Chittleborough, “Spatial prediction of soil properties from landform attributes derived from a digital elevation model,” Geoderma 63 (3), 197–204 (1994).CrossRefGoogle Scholar
  27. 27.
    P. A. Shary, L. S. Sharaya, and A. V. Mitusov, “Fundamental quantitative methods of land surface analysis,” Geoderma 107 (1–2), 1–32 (2002).CrossRefGoogle Scholar
  28. 28.
    P. A. Shary, Personal research website on geomorphometry and applications, 2006. Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. V. Gopp
    • 1
    Email author
  • T. V. Nechaeva
    • 1
  • O. A. Savenkov
    • 1
  • N. V. Smirnova
    • 1
  • V. V. Smirnov
    • 2
  1. 1.Institute of Soil Science and AgrochemistrySiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Computational TechnologiesSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations