Eurasian Soil Science

, Volume 48, Issue 12, pp 1300–1305 | Cite as

Polycyclic aromatic hydrocarbons in insular and coastal soils of the Russian Arctic

  • E. V. AbakumovEmail author
  • V. M. Tomashunas
  • E. D. Lodygin
  • D. N. Gabov
  • V. T. Sokolov
  • V. A. Krylenkov
  • I. Yu. Kirtsideli
Soil Chemistry


The content and individual component compositions of polycyclic aromatic hydrocarbons in polar soils of the Russian Arctic sector have been studied. The contamination of soils near research stations is identified from the expansion of the range of individual polycyclic aromatic hydrocarbons, the abrupt increase in the content of heavy fractions, and the accumulation of benzo[a]pyrene. Along with heavy hydrocarbons, light hydrocarbons (which are not only natural compounds, but also components of organic pollutants) are also accumulated in the contaminated soils. Heavy polycyclic aromatic hydrocarbons are usually of technogenic origin and can serve as markers of anthropogenic impact in such areas as Cape Sterligov, Cape Chelyuskin, and the Izvestii TsIK Islands. The content of benzo[a]pyrene, the most hazardous organic toxicant, appreciably increases in soils around the stations, especially compared to the control; however, the level of MPC is exceeded only for the soils of Cape Chelyuskin.


Arctic soils cryozems (Cryosols) soil-ecological status of landscapes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. V. Abakumov, “Particle-size distribution in soils of West Antarctica,” Eurasian Soil Sci. 43 (3), 297–304 (2010).CrossRefGoogle Scholar
  2. 2.
    E. V. Abakumov, “The sources and composition of humus in some soils of West Antarctica,” Eurasian Soil Sci. 43 (5), 499–508 (2010).CrossRefGoogle Scholar
  3. 3.
    E. V. Abakumov, E. D. Lodygin, D. N. Gabov, and V. A. Krylenkov, “Polycyclic aromatic hydrocarbons in soils of Antarctica by example of Russian Polar stations,” Gig. Sanit., No. 1, 30–34 (2014).Google Scholar
  4. 4.
    E. V. Abakumov, E. I. Gagarina, V. F. Sapega, and D. Yu. Vlasov, “Micromorphological features of the fine earth and skeletal fractions of soils of West Antarctica in the areas of Russian Antarctic stations,” Eurasian Soil Sci. 46 (12), 1219–1229 (2013). doi 10.1134/S1064229313120028CrossRefGoogle Scholar
  5. 5.
    D. Yu. Vlasov, E. V. Abakumov, M. A. Nadporozhskaya, N. V. Kovsh, V. A. Krylenkov, V. V. Lukin, and E. V. Safronova, “Lithosols of King George Island, western Antarctica,” Eurasian Soil Sci. 38 (7), 681–687 (2005).Google Scholar
  6. 6.
    D. N. Gabov, V. A. Beznosikov, B. M. Kondratenok, and E. V. Yakovleva, “Formation of polycyclic aromatic hydrocarbons in northern and middle taiga soils,” Eurasian Soil Sci. 41 (11), 1180–11883 (2008).CrossRefGoogle Scholar
  7. 7.
    D. N. Gabov, V. A. Beznosikov, and B. M. Kondratenok, “Polycyclic aromatic hydrocarbons in background podzolic and gleyic peat-podzolic soils,” Eurasian Soil Sci. 40 (3), 256–264 (2007).CrossRefGoogle Scholar
  8. 8.
    A. N. Gennadiev, Yu. I. Pikovskii, V. N. Florovskaya, T. A. Alekseeva, I. S. Kozin, A. I. Ogloblina, M. E. Ramenskaya, T. A. Teplitskaya, and E. I. Shurubor, Geochemistry of Polycyclic Aromatic Hydrocarbons in Rocks and Soils (Moscow State University, Moscow, 1996) [in Russian].Google Scholar
  9. 9.
    GN (State Normative) Maximum Permissible Concentrations of Chemical Elements in Soil, 2006.Google Scholar
  10. 10.
    D. A. Golubev and N. D. Sorokin, Environmental Protection, Nature Management, and Environmental Safety in St. Petersburg in 2002 (Sezam, St. Petersburg, 2003) [in Russian].Google Scholar
  11. 11.
    L. P. Kapel’kina, “Environmental aspects of pollution of urban soils: standardization paradoxes,” Probl. Ozeleneniya Gorodov, No. 10, 191–195 (2004).Google Scholar
  12. 12.
    L. P. Kapel’kina, “Standardization of concentration of pollutants in urban soils of megapolis, in Proceedings of the Interregional Scientific-Practical Conference “Soil Resources of the Northwestern Russia: Status, Protection, and Rational Use” (St. Petersburg State Technological University, St. Petersburg, 2008), pp. 21–28.Google Scholar
  13. 13.
    E. D. Lodygin, V. A. Beznosikov, D. N. Gabov, and S. N. Chukov, “Polycyclic aromatic hydrocarbons in soils of Vasilievsky Island (St. Petersburg),” Eurasian Soil Sci. 41 (12), 1321–1326 (2008).CrossRefGoogle Scholar
  14. 14.
    A. V. Lupachev and E. V. Abakumov “Soils of Marie Byrd Land, West Antarctica,” Eurasian Soil Sci. 46 (10), 994–1006 (2013). doi: 10.1134/S1064229313100049CrossRefGoogle Scholar
  15. 15.
    { itPND F (Normative Document) 16.1:2:2.2:3.39-03: Quantitative chemical analysis of soils. A method of measurements of mass fractions of benzo[a]pyrene in samples of soils, grounds, solid wastes, bottom sediments by high performance liquid chromatography using Lyumakhrom chromatograph}, 2007.Google Scholar
  16. 16.
    { itPND F (Normative Document) 16.1:2.2:2.3:3.62-09: Quantitative chemical analysis of soils. A method for measuring of the mass fractions of polycyclic aromatic hydrocarbons in soils, bottom sediments, sediments of waste waters, and industrial wastes by high performance liquid chromatography}, 2009.Google Scholar
  17. 17.
    SanPiN (Sanitary Rules and Normatives) 42-1284433-87: Sanitary norms of permissible concentrations of chemicals in soil, 1987.Google Scholar
  18. 18.
    Sedykh, V.N., Paradoxes in Solution of Environmental Problems of Western Siberia (Nauka, Novosibirsk, 2005) [in Russian].Google Scholar
  19. 19.
    Federal Law of March 30, 1999, No. 52-FZ “About sanitary epidemiological safety of population,” Edition of November 25, 2013, 1999.Google Scholar
  20. 20.
    E. V. Yakovleva, V. A. Beznosikov, B. M. Kondratenok, and D. N. Gabov, “’Bioaccumulation of polycyclic aromatic hydrocarbons in the soil–plant systems of the northern taiga biocenoses,” Eurasian Soil Sci. 45 (3), 309–320 (2012). doi: 10.1134/S1064229312030143CrossRefGoogle Scholar
  21. 21.
    E. Abakumov, O. Trubetskoj, D. Demin, L. Celi, C. Cerli, and O. Trubetskaya, “Humic acid characteristics in podzol soil chronosequence,” Chem. Ecol. 26, 59–66 (2010).CrossRefGoogle Scholar
  22. 22.
    P. Fernandez, J. O. Grimalt, and R. M. Vilanova, “Atmospheric gas/particle partitioning of polycyclic aromatic hydrocarbons in high mountain regions of Europe,” Environ. Sci. Technol. 36, 1162–1168 (2002).CrossRefGoogle Scholar
  23. 23.
    IARC (International Agency for Research on Cancer), “IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans,” in Polynuclear Aromatic Compounds. Part I. Chemical, Environmental, and Experimental Data (Lyon, France, 1983), Vol. 32.Google Scholar
  24. 24.
    R. W. Macdonald, L. A. Barrie, T. F. Bidleman, M. L. Diamond, D. J. Gregor, R. G. Semkin, W. M. Strachan, Y. F. Li, F. Wania, M. Alaee, L. B. Alexeeva, S. M. Backusand, R. Bailey, J. M. Bewers, C. Gobeil, et al., “Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways,” Sci. Total Environ. 254, 193–234 (2000).CrossRefGoogle Scholar
  25. 25.
    U.S. Environmental Protection Agency, Evaluation and Estimation of Potential Carcinogenic Risks of Polynuclear Aromatic Hydrocarbons (Carcinogen Assessment Group, Office of Health and Environmental Assessment, Washington DC, 1985).Google Scholar
  26. 26.
    U.S. Environmental Protection Agency, Method 3550b: Ultrasonic Extraction, Revision 2 ( Washington DC,1996).Google Scholar
  27. 27.
    U.S. Environmental Protection Agency, Method 3630c: Silica Gel Cleanup, Revision 3 ( Washington DC,1996).Google Scholar
  28. 28.
    U.S. Environmental Protection Agency, Method 8310: Polynuclear Aromatic Hydrocarbons ( Washington DC,1986).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. V. Abakumov
    • 1
    Email author
  • V. M. Tomashunas
    • 1
  • E. D. Lodygin
    • 2
  • D. N. Gabov
    • 2
  • V. T. Sokolov
    • 3
  • V. A. Krylenkov
    • 1
  • I. Yu. Kirtsideli
    • 4
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Biology, Komi Scientific Center, Ural BranchRussian Academy of SciencesSyktyvkar, Komi RepublicRussia
  3. 3.Arctic and Antarctic Research InstituteSaint PetersburgRussia
  4. 4.Komarov Botanical GardenRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations