Eurasian Soil Science

, Volume 48, Issue 7, pp 764–772 | Cite as

The influence of Fe(III) on oil biodegradation in excessively moistened soils and sediments

  • Yu. N. VodyanitskiiEmail author
  • S. Ya. Trofimov
  • S. A. Shoba
Degradation, Rehabilitation, and Conservation of Soils


Soils are self-purified from oil slowly, in the north, in particular, where hydromorphic conditions and low temperatures hinder the process. Oxidation of oil hydrocarbons depends on the type of electron acceptors and decreases in the following sequence: denitrification > Mn4+ reduction > Fe3+ reduction > sulfate reduction > methanogenesis. Usually, not all of these redox reactions develop in contaminated excessively moistened soils and sediments. Fe(III) reduction and methanogenesis are the most common: the latter is manifested near the contamination source, while the former develops in less contaminated areas. Fe reduction hinders the methanogenesis. In oil-contaminated areas, Fe reduction is also combined with sulfate reduction, the latter intensifying Fe reduction due to the formation of iron sulfides. Concurrently with oil degradation in excessively moistened soils and sediments, the composition of iron compounds changes due to the increasing Fe(II) share magnetite, as well as siderite and ferrocalcite (in calcareous deposits), and iron sulfides (in S-containing medium) are formed.


oxidation of oil hydrocarbons Fe reduction methanogenesis sulfate reduction iron oxides iron hydroxides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Avetov and E. A. Shishkonakova, “Oil pollution of mires in Western Siberia,” Priroda, No. 11, 14–24 (2010).Google Scholar
  2. 2.
    E. S. Vasil’konov, Candidate’s Dissertation in Biology (Moscow, 2009).Google Scholar
  3. 3.
    Y. N. Vodyanitskii, “Iron hydroxides in soils: a review of publications,” Eurasian Soil Sci. 43(11), 1244–1254 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. N. Vodyanitskii, Iron Compounds and Their Role in Soil Protection (Dokuchaev Soil Science Institute, Moscow, 2010) [in Russian].Google Scholar
  5. 5.
    Y. N. Vodyanitskii, N. A. Avetov, S. Y. Trofimov, A. T. Savichev, and E. A. Shishkonakova, “Influence of oil and stratal water contamination on the ash composition of oligotrophic peat soils in the oil-production area (the Ob’ region),” Eurasian Soil Sci. 46(10), 1032–1041 (2013).CrossRefGoogle Scholar
  6. 6.
    I. I. Grinberg, Organic Chemistry (Drofa, Moscow, 2002) [in Russian].Google Scholar
  7. 7.
    G. A. Zavarzin and N. N. Kolotilova, Introduction to Environmental Microbiology (Universitet, Moscow, 2001) [in Russian].Google Scholar
  8. 8.
    D. G. Zvyagintsev, Soil and Microorganisms (Moscow State University, Moscow, 1987) [in Russian].Google Scholar
  9. 9.
    S. A. Illarionov, Environmental Aspects of Remediation of Oil-Polluted Soils (Ural Branch, Russian Academy of Sciences, Yekaterinburg, 2004) [in Russian].Google Scholar
  10. 10.
    I. S. Kaurichev and D. S. Orlov, Oxidative-Reduction Processes and Their Role in the Genesis and Fertility of Soils (Kolos, Moscow, 1982) [in Russian].Google Scholar
  11. 11.
    F. I. Kozlovskii and E. A. Kornblyum, Meliorative Problems of the Development of Floodplains in the Steppe Zone (Nauka, Moscow, 1972) [in Russian].Google Scholar
  12. 12.
    N. G. Kuramshina, E. M. Kuramshin, U. B. Imashev, T. I. Nikolaeva, and G. I. Safina, “Ecogeochemical analysis of atmospheric air, snow, and soil cover in the zone affected by oil fields in Western Siberia,” Probl. Biogeokhim. Geokhim. Ekol., No. 3, 17–23 (2011).Google Scholar
  13. 13.
    A. V. Pinevich, Microbiology of Iron and Manganese (St. Petersburg State University, St. Petersburg, 2005) [in Russian].Google Scholar
  14. 14.
    Yu. I. Pikovskii, A. N. Gennadiev, S. S. Chernyanskii, and G. N. Sakharov, “The problem of diagnostics and standardization of the levels of soil pollution by oil and oil products,” Eurasian Soil Sci. 36(9), 1010–1017 (2003).Google Scholar
  15. 15.
    N. P. Solntseva, Oil Mining and Geochemistry of Natural Landscapes (Moscow State University, Moscow, 1998) [in Russian].Google Scholar
  16. 16.
    S. A. Shoba, S. Y. Trofimov, N. A. Avetov, et al., “Ecological standardization of oil concentrations in taiga soils of Western Siberia,” in International Conference “New Technologies for Purification of Petroleum-Polluted Waters, Soil, Processing and Utilization of Petroleum Wastes” (Moscow, 2001), pp. 125–127.Google Scholar
  17. 17.
    R. T. Anderson and D. R. Lovley, “Ecology and biogeochemistry of in situ groundwater bioremediation,” Adv. Microbial Ecol. 15, 289–350 (1997).CrossRefGoogle Scholar
  18. 18.
    R. T. Anderson and D. R. Lovley, “Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifer,” Bioremediation J. 3, 121–135 (1999).CrossRefGoogle Scholar
  19. 19.
    R. T. Anderson, J. N. Rooney-Varga, and D. R. Lovley, “Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifer,” Environ. Sci. Technol. 32, 1222–1229 (1998).CrossRefGoogle Scholar
  20. 20.
    M. J. Baedecker, I. M. Cozzarelli, D. I. Siegel, P. C. Bennet, and R. P. Eganhouse, “Crude oil in a shallow sand and gravel aquifer. 3. Biochemical reactions and mass balance modeling in anoxic groundwater,” Appl. Geochem. 8, 569–586 (1993).CrossRefGoogle Scholar
  21. 21.
    B. A. Bekins, I. M. Cozzarelli, E. A. Godsy, E. Warren, H. I. Essaid, and M. E. Tuccillo, “Progression of natural attenuation processes at a crude oil spill site: II. Controls on spatial distribution of microbial populations,” J. Contam. Hydrol. 53, 387–406 (2001).CrossRefGoogle Scholar
  22. 22.
    B. A. Bekins, E. A. Godsy, and E. Warren, “Distribution of microbial physiologic types in an aquifer contaminated by crude oil,” Microbiol. Ecol. 37, 263–275 (1999).CrossRefGoogle Scholar
  23. 23.
    C. M. Bethke, R. A. Sanford, M. F. Kirk, Q. Jin, and T. M. Flynn, “The thermodynamic ladder in geomicrobiology,” Am. J. Sci. 311, 183–210 (2011).CrossRefGoogle Scholar
  24. 24.
    J. D. Coates, V. K. Bhupathiraju, L. A. Achenbach, M. J. Mclnerney, and D. R. Lovley, “Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)reducers,” Int. J. Syst. Evol. Microbiol. 51, 581–588 (2001).Google Scholar
  25. 25.
    R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses (Wiley, Weinheim, 2003).CrossRefGoogle Scholar
  26. 26.
    I. M. Cozzarelli, B. A. Bakins, M. J. Baedecker, G. R. Aiken, R. P. Eganhouse, and M. E. Tuccillo, “Progression of natural attenuation processes at a crude oil spill site: I. Geochemical evolution of the plume,” J. Contam. Hydrol. 53, 369–385 (2001).CrossRefGoogle Scholar
  27. 27.
    I. M. Cozzarelli, J. S. Herman, M. J. Baedecker, and J. M. Fischer, “Geochemical heterogeneity of a gasoline-contaminated aquifer,” J. Contam. Hydrol. 40, 261–284 (1999).CrossRefGoogle Scholar
  28. 28.
    H. I. Essaid, B. A. Bekins, E. M. Godsy, and E. Warren, “Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site,” Water Resour. Res. 31(12), 3309–3327 (1995).CrossRefGoogle Scholar
  29. 29.
    W. Fan, Y. S. Yang, X. Q. Du, Y. Lu, and M. X. Yang, “Finger-printing biodegradation of petroleum contamination in shallow groundwater and soil system using hydro-bio-geochemical markers and modeling support,” Water Air Soil Pollut. 220, 253–263 (2011).CrossRefGoogle Scholar
  30. 30.
    R. Jakobsen and D. Postma, “Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, Denmark,” Geochim. Cosmochim. Acta 63, 137–151 (1999).CrossRefGoogle Scholar
  31. 31.
    M. F. Kirk, E. E. Roden, L. J. Crossy, A. J. Brearly, and M. N. Splide, “Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in modal aquifer sediment reactors,” Geochim. Cosmochim. Acta 74, 2538–2555 (2010).CrossRefGoogle Scholar
  32. 32.
    D. R. Lovley, “Dissimilatory Fe(III) and Mn(IV) reduction,” Microbiol. Rev. 55(2), 259–287 (1991).Google Scholar
  33. 33.
    D. R. Lovley, “Microbial Fe(III) reduction in subsurface environments,” FEMS Microbiol. Rev. 20, 305–313 (1997).CrossRefGoogle Scholar
  34. 34.
    D. R. Lovley, D. J. Lonergan, M. J. Baedecker, I. M. Cozzarelli, E. J. P. Phillips, and D. I. Siegel, “Oxidation of aromatic contaminants coupled to microbial iron reduction,” Nature 339, 297–299 (1989).CrossRefGoogle Scholar
  35. 35.
    D. R. Lovley and D. J. Lonergan, “Anaerobic oxidation of toluene, phenol, and para-cresol by the dissimilatory iron-reducing organism, GS-15,” Appl. Environ. Microbiol. 56, 1858–1864 (1990).Google Scholar
  36. 36.
    D. R. Lovley, J. C. Woodward, and F. H. Chapelle, “Stimulation anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands,” Nature 370, 128–131 (1994).CrossRefGoogle Scholar
  37. 37.
    A. L. Neal, S. Techkarjanaruk, A. Dohnalkova, D. McCready, B. M. Peyton, and G. G. Gessey, “Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria,” Geochim. Cosmochim. Acta 65, 223–235 (2001).CrossRefGoogle Scholar
  38. 38.
    E. E. Roden, “Fe(III) oxide reactivity toward biological versus chemical reduction,” Environ. Sci. Technol. 37, 1319–1324 (2003).CrossRefGoogle Scholar
  39. 39.
    E. E. Roden and M. M. Urrutia, “Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction,” Geomicrobiol. J. 19, 209–251 (2002).CrossRefGoogle Scholar
  40. 40.
    E. E. Roden and J. M. Zachara, “Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth,” Environ. Sci. Technol. 30, 1618–1628 (1996).CrossRefGoogle Scholar
  41. 41.
    J. N. Rooney-Varga, R. T. Anderson, J. L. Fraga, D. Ringelberg, and D. R. Lovley, “Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer,” Appl. Environ. Microbiol. 65, 3056–3063 (1999).Google Scholar
  42. 42.
    T. Satapanajaru, P. J. Shea, S. D. Comfort, and Y. Roh, “Green rust and iron oxide formation influences metolachlor dechloration during iron treatment,” Environ. Sci. Technol. 37, 5219–5227 (2003).CrossRefGoogle Scholar
  43. 43.
    R. P. Schwarzenbach, B. I. Escher, K. Fenner, T. B. Hofstetter, C. A. Johnson, U. von Gunten, and B. Wehrli, “The challenge of micropollutants in aquatic systems,” Science 313, 1072–1077 (2006).CrossRefGoogle Scholar
  44. 44.
    E. S. Shelobolina, R. T. Anderson, Y. N. Vodyanitskii, A. V. Sivtsov, R. Vuretich, and D. R. Lovley, “Importance of clay size minerals for Fe(III) respiration in a petroleum-contaminated aquifer,” Geobiology 2, 67–76 (2004).CrossRefGoogle Scholar
  45. 45.
    N. B. Tobler, T. B. Hofstetter, K. L. Straub, D. Fontana, and R. P. Schwarzenbach, “Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions,” Environ. Sci. Technol. 41, 7765–7772 (2007).CrossRefGoogle Scholar
  46. 46.
    M. M. Urrutia, E. E. Roden, J. K. Fredrickson, and J. M. Zachara, “Microbial and geochemical controls on synthetic Fe(III) oxide reduction by Shewanella alga strain BrY,” Geomicrobiol. J. 15, 269–191 (1998).CrossRefGoogle Scholar
  47. 47.
    M. M. Urrutia, R. E. Roden, and J. M. Zachara, “Influence of aqueous and solid-phase Fe-complexants on microbial reduction of crystalline Fe(III) oxides,” Environ. Sci. Technol. 33, 4022–4028 (1999).CrossRefGoogle Scholar
  48. 48.
    E. K. Web and M. P. Anderson, “Simulation of preferential flow in three-dimensional, heterogeneous conductivity fields with realistic internal architecture,” Water Resour. Res. 32, 533–545 (1996).CrossRefGoogle Scholar
  49. 49.
    J. M. Zachara, J. K. Fredrickson, S. M. Li, D. W. Kennedy, S. C. Smith, and P. L. Gassman, “Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials,” Am. Miner. 83, 1426–1443 (1998).Google Scholar
  50. 50.
    J. M. Zachara, R. K. Kukkadapu, P. L. Gassman, A. Dohnalkova, J. K. Fredrickson, and T. Anderson, “Biogeochemical transformation of Fe minerals in petroleum-contaminated aquifer,” Geochim. Cosmochim. Acta 68, 1791–1805 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Yu. N. Vodyanitskii
    • 1
    Email author
  • S. Ya. Trofimov
    • 1
  • S. A. Shoba
    • 1
  1. 1.Soil Science FacultyLomonosov Moscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations