Eurasian Soil Science

, Volume 48, Issue 7, pp 726–734 | Cite as

Electrophysical approach to assessing some cultivation and fertility elements of light soils in the humid zone

  • A. I. Pozdnyakov
  • P. I. Eliseev
  • L. A. Pozdnyakov
Soil Physics
  • 31 Downloads

Abstract

It has been shown that the specific electrical resistance (SER) is an integral parameter of the physicochemical state of light-textured soils, especially of their solid phase properties. First relationships of SER with physical clay content, cation exchange capacity, and carbon content have been obtained and analyzed for light soils of the humid zone. It has been found that the relationships between the SER and the mentioned properties have exponential shapes y = aexp(-bx), where a and b are parameters; y is the SER value, Ωm; and x is the property value. The similar shapes of the equations allow for use of the SER for the assessment of the main cultivation and fertility elements of light soils in the humid zone (contents of physical clay and organic carbon and cation exchange capacity). On the basis of these relationships, a new approach has been proposed to the selection of SER values for drawing ISO-ohm lines delineating relatively homogeneous zones within the areas (fields) studied by electrophysical methods. Therefore, electrical surveys and ISO-ohm maps can find wide use in soil cover survey.

Keywords

specific electrical resistance anthropogenically transformed light-textured soils humid zone soil mapping degree of cultivation fertility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Anikanova and T. A. Pavlova, “Application of microelectric vertical sounding for the study of evolution of irrigated lands,” Vestn. Mosk. Univ., Ser. 6: Biol., Pochvoved., No. 2, 87–91 (1976).Google Scholar
  2. 2.
    P. N. Berezin and V. M. Kipnis, “Mechanisms of formation mechanisms of natural electric fields and their influence on soil processes,” Vestn. Mosk. Univ., Ser. 6: Biol., Pochvoved., No. 2, (1978).Google Scholar
  3. 3.
    L. B. Borovinskaya, “Application of natural electric field for the study of filtration in soils and rocks,” Pochvovedenie, No. 11, 113–121 (1970).Google Scholar
  4. 4.
    L. B. Borovinskaya, V. P. Samsonova, and L. M. Plokhikh, “Dependence of specific electric resistance of soil on its moisture,” Biol. Nauki, No. 3, 70–78 (1981).Google Scholar
  5. 5.
    A. F. Vadyunina, Electromelioration of Saline Soils (Moscow State University, Moscow, 1979) [in Russian].Google Scholar
  6. 6.
    A. F. Vadyunina and P. N. Berezin, “Influence of constant electric current on the efficiency of washing of solonetzic solonchaks,” Vestn. Mosk. Univ., Ser. 6: Biol., Pochvoved., No. 4, (1968).Google Scholar
  7. 7.
    A. F. Vadyunina, A. V. Kirichenko, and K. Yu. Khan, “Mapping and control of salinization by specific electric resistance,” in Improvement of the Efficiency of Management of Reclaimed Lands in Siberia (Krasnoyarsk, 1976), pp. 65–68.Google Scholar
  8. 8.
    N. V. Voitovich, L. L. Shishov, et al., Soils of Moscow Oblast and Their Use (Pochven. Inst. im. V.V. Dokuchaeva, Moscow, 2002), Vol. 2 [in Russian].Google Scholar
  9. 9.
    R. G. Gorbunova, “Electrometric analysis of soil water extracts and groundwater,” Pochvovedenie, No. 5, (1970).Google Scholar
  10. 10.
    I. G. Grushko, “Study of electric parameters of some soil types at different moisture levels,” Tr. Ukr. Nats. Akad. Navuk, No. 191, 106–112 (1983).Google Scholar
  11. 11.
    E. M. Zheveleva, A. I. Pozdnyakov, and A. Ya. Strochkov, “Relationships between electrical resistance, morphology, and chemical properties of gleyed soddy-podzolic soils,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 4 (1986).Google Scholar
  12. 12.
    V. D. Ivanov and E. V. Kuznetsova, Soil Assessment (Voronezh, 2004) [in Russian].Google Scholar
  13. 13.
    I. I. Karmanov and D. S. Bulgakov, Landscape-Agricultural Typification of Lands (Pochven. Inst. im. V.V. Dokuchaeva, Moscow, 1997) [in Russian].Google Scholar
  14. 14.
    L. O. Karpachevskii, A. I. Pozdnyakov, and A. Ya. Strochkov, “Electrical resistance of some soils of the humid soils,” Pochvovedenie, No. 1, (1983).Google Scholar
  15. 15.
    B. M. Kogut, V. A. Bol’shakov, A. S. Frid, N. M. Krasnova, E. S. Brodskii, and V. I. Kuleshov, Analytical Support of the Monitoring of Soil Humus Status. Methodological Guidelines (Ross. Akad. S-kh Nauk, Moscow, 1993) [in Russian].Google Scholar
  16. 16.
    B. E. Kondrashkin, A. I. Pozdnyakov, V. P. Samsonova, and M. I. Kondrashkina, “Analysis of the dependence of specific electrical resistance on major properties of agrogray soils of Bryansk Opolie,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 2, 36–39 (2011).Google Scholar
  17. 17.
    L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  18. 18.
    “On the Application of Electrical Sounding for Reclamation Studies,” Dokl. Timiryazevsk. S-kh. Akad., No. 82, (1962).Google Scholar
  19. 19.
    L. A. Pozdnyakov, “Estimation of the biological activity of peat soils from the specific electrical resistance,” Eurasian Soil Sci. 41(10), 1077–1082 (2008).CrossRefGoogle Scholar
  20. 20.
    A. I. Pozdnyakov, Field Electrophysics of Soils (Nauka, Moscow, 2001) [in Russian].Google Scholar
  21. 21.
    A. I. Pozdnyakov, “Electrical parameters of soils and pedogenesis,” Eurasian Soil Sci. 41(10), 1050–1058 (2008).CrossRefGoogle Scholar
  22. 22.
    A. I. Pozdnyakov, “Application of electrophysics in soil reclamation,” in Encyclopedia of Soil Reclamation (Rosinformagrotekh, Moscow, 2004), Vol. 3, pp. 416–417.Google Scholar
  23. 23.
    A. I. Pozdnyakov and Ch. G. Gyulalyev, Electrophysical Properties of Some Soils (Adil’ogly, Baku, 2004) [in Russian].Google Scholar
  24. 24.
    A. I. Pozdnyakov and P. I. Eliseev, “Dependence of specific electrical resistance on some properties of coarsetextured plowed soils in ameliorated landscapes of the humid zone,” Vestn. Orenb. Gos. Univ., No. 10(146), 96–102 (2012).Google Scholar
  25. 25.
    A. I. Pozdnyakov and P. I. Eliseev, “Electrophysical methods of the rapid assessment of topographic patterns of major properties of coarse-textured soils in the humid zone,” in Natural and Technical Sciences (Sputnik, Moscow, 2012), No. 4(60), pp. 128–131. ISSN 1684-2626.Google Scholar
  26. 26.
    A. I. Pozdnyakov, P. I. Eliseev, and A. V. Rusakov, “Electrical resistance as an indicator of fertility of plowed loamy sandy soils of the humid zone,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 2, 54–60 (2012). ISSN 0137-0944.Google Scholar
  27. 27.
    A. I. Pozdnyakov, B. E. Kondrashkin, M. V. Bannikov, and A. P. Shvarov, “Prospects of using electrical resistance for the assessment of cultivated soddy-podzolic soils with different genetic features,” Vestn. Orenb. Gos. Univ., No. 10, 590–592 (2009).Google Scholar
  28. 28.
    A. I. Pozdnyakov, S. M. Shalaginova, A. D. Pozdnyakova, and A. V. Rusakov, “Anisotropy of the properties of some anthropogenically transformed soils of podzolic type,” Eurasian Soil Sci. 42(11), 1218–1228 (2009).CrossRefGoogle Scholar
  29. 29.
    A. I. Pozdnyakov and Yu. K. Khan, “Use of constant electric fields in soil studies,” Pochvovedenie, No. 7, 69–80 (1979).Google Scholar
  30. 30.
    I. I. Sudnitsyn, A. V. Smagin, and A. P. Shvarov, “The theory of Maxwell-Boltzmann-Helmholtz-Gouy about the double electric layer in disperse systems and its application to soil science (on the 100th anniversary of the paper published by Gouy),” Eurasian Soil Sci. 45(4), 452–457 (2012).CrossRefGoogle Scholar
  31. 31.
    E. V. Shain, Lecturs on Soil Physics (Moscow State University, Moscow, 2005) [in Russian].Google Scholar
  32. 32.
    D. L. Corwin and S. M. Lesch, “Application of soil electrical conductivity to precision agriculture: theory, principles, and guidelines,” Agron. J. 95, 455–471 (2003).CrossRefGoogle Scholar
  33. 33.
    D. L. Corwin and S. M. Lesch, “Apparent soil electrical conductivity measurements in agriculture,” Comput. Electron. Agric. 46, 11–43 (2005).CrossRefGoogle Scholar
  34. 34.
    S. P. Friedman, “Soil properties influencing apparent electrical conductivity: a review,” Comput. Electron. Agric. 46, 45–70 (2005).CrossRefGoogle Scholar
  35. 35.
    R. Grisso, M. M. Alley, D. Holshouser, and W. E. Thomason, Precision Farming Tools: Soil Electrical Conductivity (Virginia Cooperative Extension Publ., Blacksburg, 2009), pp. 442–508.Google Scholar
  36. 36.
    A. D. Halvoison and I. D. Rhoades, “Field mapping soil conductivity to delineate dryland saline seeps with four-electrode technique,” Soil Sci. Soc. Am J. 40, 571–574 (1976).CrossRefGoogle Scholar
  37. 37.
    A. D. Halvorson and C. A. Reule, “Estimating water salinity with geophysical earth resistivity equipment,” Soil Sci. Soc. Am. J. 40, (1976).Google Scholar
  38. 38.
    C. K. Johnson, K. M. Eskridge, and D. L. Corwin, “Apparent soil electrical conductivity: Applications for designing and evaluating field-scale experiments,” Comput. Electron. Agric. 46, 181–202 (2005).CrossRefGoogle Scholar
  39. 39.
    N. R. Kitchen, K. A. Sudduth, and S. T. Drummond, “Soil electrical conductivity as a crop productivity measure for claypan soils,” J. Prod. Agric. 12, 607–617 (1999).CrossRefGoogle Scholar
  40. 40.
    S. M. Lesch, D. L. Corwin, and D. A. Robinson, “Apparent soil electrical conductivity mapping as an agricultural management tool in arid zone soils,” Comput. Electron. Agric. 46, 351–378 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. I. Pozdnyakov
    • 1
  • P. I. Eliseev
    • 1
  • L. A. Pozdnyakov
    • 1
  1. 1.Faculty of Soil ScienceMoscow State UniversityMoscowRussia

Personalised recommendations